Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-10

AUTHORS

Mazhar Adli, Bradley E Bernstein

ABSTRACT

Chromatin immunoprecipitation (ChIP) combined with high-throughput sequencing (ChIP-seq) has become the gold standard for whole-genome mapping of protein-DNA interactions. However, conventional ChIP protocols necessitate the use of large numbers of cells, and library preparation steps associated with current high-throughput sequencing platforms require substantial amounts of DNA; both of these factors preclude the application of ChIP-seq technology to many biologically important but rare cell types. Here we describe a nano-ChIP-seq protocol that combines a high-sensitivity small-scale ChIP assay and a tailored procedure for generating high-throughput sequencing libraries from scarce amounts of ChIP DNA. In terms of the numbers of cells required, the method provides two to three orders of magnitude of improvement over the conventional ChIP-seq method and the entire procedure can be completed within 4 d. More... »

PAGES

1656

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nprot.2011.402

DOI

http://dx.doi.org/10.1038/nprot.2011.402

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034708200

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21959244


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatin Immunoprecipitation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Library", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hematopoietic Stem Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stem Cells", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.32224.35", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.", 
            "Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.", 
            "Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.", 
            "Center for Systems Biology and Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adli", 
        "givenName": "Mazhar", 
        "id": "sg:person.01014451673.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014451673.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.32224.35", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.", 
            "Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.", 
            "Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.", 
            "Center for Systems Biology and Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernstein", 
        "givenName": "Bradley E", 
        "id": "sg:person.0724604220.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724604220.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002144207", 
          "https://doi.org/10.1038/nmeth.1404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002144207", 
          "https://doi.org/10.1038/nmeth.1404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1634/stemcells.2006-0430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005316811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006115199", 
          "https://doi.org/10.1038/nrg2641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006115199", 
          "https://doi.org/10.1038/nrg2641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006890845", 
          "https://doi.org/10.1038/ng1820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006890845", 
          "https://doi.org/10.1038/ng1820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0704468104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008811016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038982572", 
          "https://doi.org/10.1038/nmeth.1626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048784038", 
          "https://doi.org/10.1038/nprot.2008.68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050226586", 
          "https://doi.org/10.1038/nmeth.1478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050226586", 
          "https://doi.org/10.1038/nmeth.1478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056459183", 
          "https://doi.org/10.1038/ng569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056459183", 
          "https://doi.org/10.1038/ng569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000112625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069095674"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-10", 
    "datePublishedReg": "2011-10-01", 
    "description": "Chromatin immunoprecipitation (ChIP) combined with high-throughput sequencing (ChIP-seq) has become the gold standard for whole-genome mapping of protein-DNA interactions. However, conventional ChIP protocols necessitate the use of large numbers of cells, and library preparation steps associated with current high-throughput sequencing platforms require substantial amounts of DNA; both of these factors preclude the application of ChIP-seq technology to many biologically important but rare cell types. Here we describe a nano-ChIP-seq protocol that combines a high-sensitivity small-scale ChIP assay and a tailored procedure for generating high-throughput sequencing libraries from scarce amounts of ChIP DNA. In terms of the numbers of cells required, the method provides two to three orders of magnitude of improvement over the conventional ChIP-seq method and the entire procedure can be completed within 4 d.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nprot.2011.402", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2699366", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2690500", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2699342", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037502", 
        "issn": [
          "1754-2189", 
          "1750-2799"
        ], 
        "name": "Nature Protocols", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq", 
    "pagination": "1656", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a556425817db5aabea26e7403ad31e61e0b7ec6f4cc8149b0fade539b374aefd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21959244"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101284307"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nprot.2011.402"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034708200"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nprot.2011.402", 
      "https://app.dimensions.ai/details/publication/pub.1034708200"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nprot.2011.402"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nprot.2011.402'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nprot.2011.402'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nprot.2011.402'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nprot.2011.402'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      50 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nprot.2011.402 schema:about N1c01e220517a4844aa735d557e1e17b3
2 N2cbc643d2f4b42edaec8e6097b5e57d9
3 N36f1a7843b524580a1abd15f82ca1d5b
4 N454deb510e324e619d615114a650eeff
5 N5431463f6bcf438ebf2ee0198cd0091f
6 N74cd098b9f8249b0b6ea4401c65e3b48
7 N752adb589d3e4c49ad80f89d82f8825a
8 N8e0bc86ce2df4f8fa664d39108e95e74
9 N982e2290d5e94a49a19633fc6ac609dd
10 Na16089a255374f30ac7d78d9a7790827
11 Nd953f44040cb4d8dbc2f771299a08d37
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N85c6151dfe224792994ec8d48cc21357
15 schema:citation sg:pub.10.1038/ng1820
16 sg:pub.10.1038/ng569
17 sg:pub.10.1038/nmeth.1404
18 sg:pub.10.1038/nmeth.1478
19 sg:pub.10.1038/nmeth.1626
20 sg:pub.10.1038/nprot.2008.68
21 sg:pub.10.1038/nrg2641
22 https://doi.org/10.1073/pnas.0704468104
23 https://doi.org/10.1634/stemcells.2006-0430
24 https://doi.org/10.2144/000112625
25 schema:datePublished 2011-10
26 schema:datePublishedReg 2011-10-01
27 schema:description Chromatin immunoprecipitation (ChIP) combined with high-throughput sequencing (ChIP-seq) has become the gold standard for whole-genome mapping of protein-DNA interactions. However, conventional ChIP protocols necessitate the use of large numbers of cells, and library preparation steps associated with current high-throughput sequencing platforms require substantial amounts of DNA; both of these factors preclude the application of ChIP-seq technology to many biologically important but rare cell types. Here we describe a nano-ChIP-seq protocol that combines a high-sensitivity small-scale ChIP assay and a tailored procedure for generating high-throughput sequencing libraries from scarce amounts of ChIP DNA. In terms of the numbers of cells required, the method provides two to three orders of magnitude of improvement over the conventional ChIP-seq method and the entire procedure can be completed within 4 d.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf Naf74fcf13e9d42068f9cfd211d49978a
32 Nf6b42cb60421414e97810ca43d3dc0e0
33 sg:journal.1037502
34 schema:name Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq
35 schema:pagination 1656
36 schema:productId N053f2a3c6fe54ef6a6c3151494d6b2b6
37 N567efb0b61d94b68a54096d129a008b7
38 N7ae4787575c041b78866bc0a04e51f68
39 N9829c95efc2648a0a4a496eea0f1aa49
40 Nfe330be363e74fb59965a49996cb4b06
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034708200
42 https://doi.org/10.1038/nprot.2011.402
43 schema:sdDatePublished 2019-04-11T02:16
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N61aafc3a8e59455494d81e727d06d14f
46 schema:url https://www.nature.com/articles/nprot.2011.402
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N053f2a3c6fe54ef6a6c3151494d6b2b6 schema:name doi
51 schema:value 10.1038/nprot.2011.402
52 rdf:type schema:PropertyValue
53 N1c01e220517a4844aa735d557e1e17b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Hematopoietic Stem Cells
55 rdf:type schema:DefinedTerm
56 N2cbc643d2f4b42edaec8e6097b5e57d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Genome
58 rdf:type schema:DefinedTerm
59 N36f1a7843b524580a1abd15f82ca1d5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Sequence Analysis, DNA
61 rdf:type schema:DefinedTerm
62 N454deb510e324e619d615114a650eeff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Mice
64 rdf:type schema:DefinedTerm
65 N5431463f6bcf438ebf2ee0198cd0091f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Cells, Cultured
67 rdf:type schema:DefinedTerm
68 N567efb0b61d94b68a54096d129a008b7 schema:name pubmed_id
69 schema:value 21959244
70 rdf:type schema:PropertyValue
71 N61aafc3a8e59455494d81e727d06d14f schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N74cd098b9f8249b0b6ea4401c65e3b48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Gene Library
75 rdf:type schema:DefinedTerm
76 N752adb589d3e4c49ad80f89d82f8825a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Nanotechnology
78 rdf:type schema:DefinedTerm
79 N7ae4787575c041b78866bc0a04e51f68 schema:name readcube_id
80 schema:value a556425817db5aabea26e7403ad31e61e0b7ec6f4cc8149b0fade539b374aefd
81 rdf:type schema:PropertyValue
82 N85c6151dfe224792994ec8d48cc21357 rdf:first sg:person.01014451673.16
83 rdf:rest Nb97beb79587640d9959a885d4aa36e35
84 N8e0bc86ce2df4f8fa664d39108e95e74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Stem Cells
86 rdf:type schema:DefinedTerm
87 N9829c95efc2648a0a4a496eea0f1aa49 schema:name nlm_unique_id
88 schema:value 101284307
89 rdf:type schema:PropertyValue
90 N982e2290d5e94a49a19633fc6ac609dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Genomics
92 rdf:type schema:DefinedTerm
93 Na16089a255374f30ac7d78d9a7790827 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Chromatin Immunoprecipitation
95 rdf:type schema:DefinedTerm
96 Naf74fcf13e9d42068f9cfd211d49978a schema:volumeNumber 6
97 rdf:type schema:PublicationVolume
98 Nb97beb79587640d9959a885d4aa36e35 rdf:first sg:person.0724604220.48
99 rdf:rest rdf:nil
100 Nd953f44040cb4d8dbc2f771299a08d37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Animals
102 rdf:type schema:DefinedTerm
103 Nf6b42cb60421414e97810ca43d3dc0e0 schema:issueNumber 10
104 rdf:type schema:PublicationIssue
105 Nfe330be363e74fb59965a49996cb4b06 schema:name dimensions_id
106 schema:value pub.1034708200
107 rdf:type schema:PropertyValue
108 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
109 schema:name Biological Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
112 schema:name Genetics
113 rdf:type schema:DefinedTerm
114 sg:grant.2690500 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2011.402
115 rdf:type schema:MonetaryGrant
116 sg:grant.2699342 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2011.402
117 rdf:type schema:MonetaryGrant
118 sg:grant.2699366 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2011.402
119 rdf:type schema:MonetaryGrant
120 sg:journal.1037502 schema:issn 1750-2799
121 1754-2189
122 schema:name Nature Protocols
123 rdf:type schema:Periodical
124 sg:person.01014451673.16 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
125 schema:familyName Adli
126 schema:givenName Mazhar
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014451673.16
128 rdf:type schema:Person
129 sg:person.0724604220.48 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
130 schema:familyName Bernstein
131 schema:givenName Bradley E
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724604220.48
133 rdf:type schema:Person
134 sg:pub.10.1038/ng1820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006890845
135 https://doi.org/10.1038/ng1820
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/ng569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056459183
138 https://doi.org/10.1038/ng569
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nmeth.1404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002144207
141 https://doi.org/10.1038/nmeth.1404
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nmeth.1478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050226586
144 https://doi.org/10.1038/nmeth.1478
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nmeth.1626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038982572
147 https://doi.org/10.1038/nmeth.1626
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nprot.2008.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048784038
150 https://doi.org/10.1038/nprot.2008.68
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nrg2641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006115199
153 https://doi.org/10.1038/nrg2641
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1073/pnas.0704468104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008811016
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1634/stemcells.2006-0430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005316811
158 rdf:type schema:CreativeWork
159 https://doi.org/10.2144/000112625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069095674
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.32224.35 schema:alternateName Massachusetts General Hospital
162 schema:name Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
163 Center for Systems Biology and Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, USA.
164 Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
165 Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...