Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-10

AUTHORS

Mazhar Adli, Bradley E Bernstein

ABSTRACT

Chromatin immunoprecipitation (ChIP) combined with high-throughput sequencing (ChIP-seq) has become the gold standard for whole-genome mapping of protein-DNA interactions. However, conventional ChIP protocols necessitate the use of large numbers of cells, and library preparation steps associated with current high-throughput sequencing platforms require substantial amounts of DNA; both of these factors preclude the application of ChIP-seq technology to many biologically important but rare cell types. Here we describe a nano-ChIP-seq protocol that combines a high-sensitivity small-scale ChIP assay and a tailored procedure for generating high-throughput sequencing libraries from scarce amounts of ChIP DNA. In terms of the numbers of cells required, the method provides two to three orders of magnitude of improvement over the conventional ChIP-seq method and the entire procedure can be completed within 4 d. More... »

PAGES

1656

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nprot.2011.402

DOI

http://dx.doi.org/10.1038/nprot.2011.402

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034708200

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21959244


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatin Immunoprecipitation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Library", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hematopoietic Stem Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stem Cells", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.32224.35", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.", 
            "Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.", 
            "Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.", 
            "Center for Systems Biology and Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adli", 
        "givenName": "Mazhar", 
        "id": "sg:person.01014451673.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014451673.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.32224.35", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.", 
            "Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.", 
            "Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.", 
            "Center for Systems Biology and Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernstein", 
        "givenName": "Bradley E", 
        "id": "sg:person.0724604220.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724604220.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002144207", 
          "https://doi.org/10.1038/nmeth.1404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002144207", 
          "https://doi.org/10.1038/nmeth.1404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1634/stemcells.2006-0430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005316811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006115199", 
          "https://doi.org/10.1038/nrg2641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006115199", 
          "https://doi.org/10.1038/nrg2641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006890845", 
          "https://doi.org/10.1038/ng1820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006890845", 
          "https://doi.org/10.1038/ng1820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0704468104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008811016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038982572", 
          "https://doi.org/10.1038/nmeth.1626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048784038", 
          "https://doi.org/10.1038/nprot.2008.68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050226586", 
          "https://doi.org/10.1038/nmeth.1478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050226586", 
          "https://doi.org/10.1038/nmeth.1478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056459183", 
          "https://doi.org/10.1038/ng569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056459183", 
          "https://doi.org/10.1038/ng569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000112625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069095674"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-10", 
    "datePublishedReg": "2011-10-01", 
    "description": "Chromatin immunoprecipitation (ChIP) combined with high-throughput sequencing (ChIP-seq) has become the gold standard for whole-genome mapping of protein-DNA interactions. However, conventional ChIP protocols necessitate the use of large numbers of cells, and library preparation steps associated with current high-throughput sequencing platforms require substantial amounts of DNA; both of these factors preclude the application of ChIP-seq technology to many biologically important but rare cell types. Here we describe a nano-ChIP-seq protocol that combines a high-sensitivity small-scale ChIP assay and a tailored procedure for generating high-throughput sequencing libraries from scarce amounts of ChIP DNA. In terms of the numbers of cells required, the method provides two to three orders of magnitude of improvement over the conventional ChIP-seq method and the entire procedure can be completed within 4 d.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nprot.2011.402", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2699366", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2690500", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2699342", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037502", 
        "issn": [
          "1754-2189", 
          "1750-2799"
        ], 
        "name": "Nature Protocols", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq", 
    "pagination": "1656", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a556425817db5aabea26e7403ad31e61e0b7ec6f4cc8149b0fade539b374aefd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21959244"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101284307"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nprot.2011.402"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034708200"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nprot.2011.402", 
      "https://app.dimensions.ai/details/publication/pub.1034708200"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nprot.2011.402"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nprot.2011.402'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nprot.2011.402'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nprot.2011.402'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nprot.2011.402'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      50 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nprot.2011.402 schema:about N035746be720a40af9c23a349e7da2b01
2 N0da968ec3e5149c48816c71394d91feb
3 N11e7ca7e636e4331ab7a1fd24aa2cbe3
4 N1d456aa2368b41cf92080795b3dfec33
5 N3f92d4faa4ee4cc3a637de2ce9795c03
6 N6154b88d4ad44867b96e0876ee1f368b
7 N85cdf6aa0af64632b4c41a26cbcb6c18
8 N885eaa270d3248d2b82ff42f7be2d902
9 Nbe277dff431741faa0333d7bb5ef1b16
10 Ne31db9b7597844c7999243c4d81be20e
11 Ne6fc5ac140b142a1a14d84ca61ca46ba
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N96f3d4a3e7104165964877a404a4d61e
15 schema:citation sg:pub.10.1038/ng1820
16 sg:pub.10.1038/ng569
17 sg:pub.10.1038/nmeth.1404
18 sg:pub.10.1038/nmeth.1478
19 sg:pub.10.1038/nmeth.1626
20 sg:pub.10.1038/nprot.2008.68
21 sg:pub.10.1038/nrg2641
22 https://doi.org/10.1073/pnas.0704468104
23 https://doi.org/10.1634/stemcells.2006-0430
24 https://doi.org/10.2144/000112625
25 schema:datePublished 2011-10
26 schema:datePublishedReg 2011-10-01
27 schema:description Chromatin immunoprecipitation (ChIP) combined with high-throughput sequencing (ChIP-seq) has become the gold standard for whole-genome mapping of protein-DNA interactions. However, conventional ChIP protocols necessitate the use of large numbers of cells, and library preparation steps associated with current high-throughput sequencing platforms require substantial amounts of DNA; both of these factors preclude the application of ChIP-seq technology to many biologically important but rare cell types. Here we describe a nano-ChIP-seq protocol that combines a high-sensitivity small-scale ChIP assay and a tailored procedure for generating high-throughput sequencing libraries from scarce amounts of ChIP DNA. In terms of the numbers of cells required, the method provides two to three orders of magnitude of improvement over the conventional ChIP-seq method and the entire procedure can be completed within 4 d.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N86f4e8fcbe1243af87e5f10941ad0f79
32 Ne75475fffdb446d8ba104c7073ce51c6
33 sg:journal.1037502
34 schema:name Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq
35 schema:pagination 1656
36 schema:productId N47f920a0f48e4a2999c5d3d536b8dd00
37 N6af7235a96ed4b7d976ee9ecca58f534
38 N8fd677b7375446dd8e421800775d4ce5
39 Nefb9962194cf49159d82b56cc18e8a41
40 Nfe3294b4aa7b451b8d7ba7bf0d4be5fe
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034708200
42 https://doi.org/10.1038/nprot.2011.402
43 schema:sdDatePublished 2019-04-11T02:16
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nbc73e2dca9b047749f78445f3635b4f9
46 schema:url https://www.nature.com/articles/nprot.2011.402
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N035746be720a40af9c23a349e7da2b01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
51 schema:name Genome
52 rdf:type schema:DefinedTerm
53 N0da968ec3e5149c48816c71394d91feb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Nanotechnology
55 rdf:type schema:DefinedTerm
56 N11e7ca7e636e4331ab7a1fd24aa2cbe3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Genomics
58 rdf:type schema:DefinedTerm
59 N1d456aa2368b41cf92080795b3dfec33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Stem Cells
61 rdf:type schema:DefinedTerm
62 N3f92d4faa4ee4cc3a637de2ce9795c03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Cells, Cultured
64 rdf:type schema:DefinedTerm
65 N47f920a0f48e4a2999c5d3d536b8dd00 schema:name nlm_unique_id
66 schema:value 101284307
67 rdf:type schema:PropertyValue
68 N6154b88d4ad44867b96e0876ee1f368b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Hematopoietic Stem Cells
70 rdf:type schema:DefinedTerm
71 N6af7235a96ed4b7d976ee9ecca58f534 schema:name pubmed_id
72 schema:value 21959244
73 rdf:type schema:PropertyValue
74 N85cdf6aa0af64632b4c41a26cbcb6c18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Sequence Analysis, DNA
76 rdf:type schema:DefinedTerm
77 N86f4e8fcbe1243af87e5f10941ad0f79 schema:volumeNumber 6
78 rdf:type schema:PublicationVolume
79 N885eaa270d3248d2b82ff42f7be2d902 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Gene Library
81 rdf:type schema:DefinedTerm
82 N8a8cf79b2e2d4b3995942cc9268f8f92 rdf:first sg:person.0724604220.48
83 rdf:rest rdf:nil
84 N8fd677b7375446dd8e421800775d4ce5 schema:name doi
85 schema:value 10.1038/nprot.2011.402
86 rdf:type schema:PropertyValue
87 N96f3d4a3e7104165964877a404a4d61e rdf:first sg:person.01014451673.16
88 rdf:rest N8a8cf79b2e2d4b3995942cc9268f8f92
89 Nbc73e2dca9b047749f78445f3635b4f9 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nbe277dff431741faa0333d7bb5ef1b16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Chromatin Immunoprecipitation
93 rdf:type schema:DefinedTerm
94 Ne31db9b7597844c7999243c4d81be20e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Mice
96 rdf:type schema:DefinedTerm
97 Ne6fc5ac140b142a1a14d84ca61ca46ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Animals
99 rdf:type schema:DefinedTerm
100 Ne75475fffdb446d8ba104c7073ce51c6 schema:issueNumber 10
101 rdf:type schema:PublicationIssue
102 Nefb9962194cf49159d82b56cc18e8a41 schema:name dimensions_id
103 schema:value pub.1034708200
104 rdf:type schema:PropertyValue
105 Nfe3294b4aa7b451b8d7ba7bf0d4be5fe schema:name readcube_id
106 schema:value a556425817db5aabea26e7403ad31e61e0b7ec6f4cc8149b0fade539b374aefd
107 rdf:type schema:PropertyValue
108 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
109 schema:name Biological Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
112 schema:name Genetics
113 rdf:type schema:DefinedTerm
114 sg:grant.2690500 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2011.402
115 rdf:type schema:MonetaryGrant
116 sg:grant.2699342 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2011.402
117 rdf:type schema:MonetaryGrant
118 sg:grant.2699366 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2011.402
119 rdf:type schema:MonetaryGrant
120 sg:journal.1037502 schema:issn 1750-2799
121 1754-2189
122 schema:name Nature Protocols
123 rdf:type schema:Periodical
124 sg:person.01014451673.16 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
125 schema:familyName Adli
126 schema:givenName Mazhar
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014451673.16
128 rdf:type schema:Person
129 sg:person.0724604220.48 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
130 schema:familyName Bernstein
131 schema:givenName Bradley E
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724604220.48
133 rdf:type schema:Person
134 sg:pub.10.1038/ng1820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006890845
135 https://doi.org/10.1038/ng1820
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/ng569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056459183
138 https://doi.org/10.1038/ng569
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nmeth.1404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002144207
141 https://doi.org/10.1038/nmeth.1404
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nmeth.1478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050226586
144 https://doi.org/10.1038/nmeth.1478
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nmeth.1626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038982572
147 https://doi.org/10.1038/nmeth.1626
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nprot.2008.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048784038
150 https://doi.org/10.1038/nprot.2008.68
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nrg2641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006115199
153 https://doi.org/10.1038/nrg2641
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1073/pnas.0704468104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008811016
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1634/stemcells.2006-0430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005316811
158 rdf:type schema:CreativeWork
159 https://doi.org/10.2144/000112625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069095674
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.32224.35 schema:alternateName Massachusetts General Hospital
162 schema:name Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
163 Center for Systems Biology and Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, USA.
164 Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
165 Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...