Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-06-25

AUTHORS

Prateek Kumar, Steven Henikoff, Pauline C Ng

ABSTRACT

The effect of genetic mutation on phenotype is of significant interest in genetics. The type of genetic mutation that causes a single amino acid substitution (AAS) in a protein sequence is called a non-synonymous single nucleotide polymorphism (nsSNP). An nsSNP could potentially affect the function of the protein, subsequently altering the carrier's phenotype. This protocol describes the use of the 'Sorting Tolerant From Intolerant' (SIFT) algorithm in predicting whether an AAS affects protein function. To assess the effect of a substitution, SIFT assumes that important positions in a protein sequence have been conserved throughout evolution and therefore substitutions at these positions may affect protein function. Thus, by using sequence homology, SIFT predicts the effects of all possible substitutions at each position in the protein sequence. The protocol typically takes 5–20 min, depending on the input. SIFT is available as an online tool (http://sift-dna.org). More... »

PAGES

1073-1081

References to SciGraph publications

Journal

TITLE

Nature Protocols

ISSUE

7

VOLUME

4

Related Patents

  • Systems And Methods For Interpreting A Human Genome Using A Synthetic Reference Sequence
  • Soybean Resistant To Cyst Nematodes
  • Methods And Kits For Amplification Of Double Stranded Dna
  • Method For The Production Of Haploid And Subsequent Doubled Haploid Plants
  • Citrullus Lanatus Producing Fruits With High Texture Fruit Flesh
  • Method And System For Extraction And Normalization Of Relationships Via Ontology Induction
  • Nucleotide Sequences And Corresponding Polypeptides Conferring Modified Phenotype Characteristics In Plants
  • Dna Array For Detecting Canine Toll-Like Receptor Gene Mutations
  • Method And System For Network Modeling To Enlarge The Search Space Of Candidate Genes For Diseases
  • Genetic Polymorphism Associated With Dog Afibrinogenemia
  • Nucleotide Sequences And Corresponding Polypeptides Conferring Modified Phenotype Characteristics In Plants
  • Compositions And Methods For Use In Combination For The Treatment And Diagnosis Of Autoimmune Diseases
  • Use Of Gtf21 Mutations In The Prognosis Of Thymic Cancers
  • Angiogenin Expression In Plants
  • Methods And Systems For Genome Analysis
  • Phased Whole Genome Genetic Risk In A Family Quartet
  • Compositions And Methods For Use In Combination For The Treatment And Diagnosis Of Autoimmune Diseases
  • Plant Transcriptional Regulators
  • Plant Transcriptional Regulators
  • Method And System For The Use Of Biomarkers For Regulatory Dysfunction In Disease
  • Nucleotide Sequences And Corresponding Polypeptides Conferring Improved Nitrogen Use Efficiency Characteristics In Plants
  • Nucleotide Sequences And Corresponding Polypeptides Conferring Improved Nitrogen Use Efficiency Characteristics In Plants
  • Mutations In Pdgfrb And Notch3 As Causes Of Autosomal Dominant Infantile Myofibromatosis
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nprot.2009.86

    DOI

    http://dx.doi.org/10.1038/nprot.2009.86

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015642657

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19561590


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Substitution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Internet", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Genomic Medicine, J. Craig Venter Institute, San Diego, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.469946.0", 
              "name": [
                "Department of Genomic Medicine, J. Craig Venter Institute, San Diego, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kumar", 
            "givenName": "Prateek", 
            "id": "sg:person.0720326117.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720326117.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fred Hutchinson Cancer Research Center, Seattle, Washington, USA", 
              "id": "http://www.grid.ac/institutes/grid.270240.3", 
              "name": [
                "Basic Sciences Division, Howard Hughes Medical Institute, Seattle, Washington, USA", 
                "Fred Hutchinson Cancer Research Center, Seattle, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Henikoff", 
            "givenName": "Steven", 
            "id": "sg:person.01110332674.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110332674.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fred Hutchinson Cancer Research Center, Seattle, Washington, USA", 
              "id": "http://www.grid.ac/institutes/grid.270240.3", 
              "name": [
                "Department of Genomic Medicine, J. Craig Venter Institute, San Diego, California, USA", 
                "Fred Hutchinson Cancer Research Center, Seattle, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ng", 
            "givenName": "Pauline C", 
            "id": "sg:person.011056174642.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011056174642.58"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/10290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008973203", 
              "https://doi.org/10.1038/10290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008763878", 
              "https://doi.org/10.1186/1471-2105-7-166"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-06-25", 
        "datePublishedReg": "2009-06-25", 
        "description": "The effect of genetic mutation on phenotype is of significant interest in genetics. The type of genetic mutation that causes a single amino acid substitution (AAS) in a protein sequence is called a non-synonymous single nucleotide polymorphism (nsSNP). An nsSNP could potentially affect the function of the protein, subsequently altering the carrier's phenotype. This protocol describes the use of the 'Sorting Tolerant From Intolerant' (SIFT) algorithm in predicting whether an AAS affects protein function. To assess the effect of a substitution, SIFT assumes that important positions in a protein sequence have been conserved throughout evolution and therefore substitutions at these positions may affect protein function. Thus, by using sequence homology, SIFT predicts the effects of all possible substitutions at each position in the protein sequence. The protocol typically takes 5\u201320 min, depending on the input. SIFT is available as an online tool (http://sift-dna.org).", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nprot.2009.86", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2529321", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1037502", 
            "issn": [
              "1754-2189", 
              "1750-2799"
            ], 
            "name": "Nature Protocols", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "non-synonymous single nucleotide polymorphisms", 
          "amino acid substitutions", 
          "protein function", 
          "protein sequences", 
          "single amino acid substitution", 
          "genetic mutations", 
          "non-synonymous variants", 
          "single nucleotide polymorphisms", 
          "sequence homology", 
          "Sorting Tolerant", 
          "acid substitutions", 
          "nucleotide polymorphisms", 
          "phenotype", 
          "sequence", 
          "mutations", 
          "carrier phenotype", 
          "homology", 
          "substitution", 
          "genetics", 
          "protein", 
          "online tool", 
          "function", 
          "possible substitution", 
          "polymorphism", 
          "variants", 
          "tolerant", 
          "evolution", 
          "SIFT", 
          "significant interest", 
          "intolerant", 
          "important position", 
          "effect", 
          "position", 
          "types", 
          "protocol", 
          "tool", 
          "interest", 
          "use", 
          "input", 
          "min", 
          "SIFT algorithm", 
          "algorithm"
        ], 
        "name": "Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm", 
        "pagination": "1073-1081", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015642657"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nprot.2009.86"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19561590"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nprot.2009.86", 
          "https://app.dimensions.ai/details/publication/pub.1015642657"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T09:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_487.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nprot.2009.86"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nprot.2009.86'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nprot.2009.86'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nprot.2009.86'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nprot.2009.86'


     

    This table displays all metadata directly associated to this object as RDF triples.

    169 TRIPLES      22 PREDICATES      79 URIs      69 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nprot.2009.86 schema:about N167944916e2c4de1beeccf80fdeb0703
    2 N197b075d2da34fd9915b00d59812fd1d
    3 N281cb13537dd4f1d9da21c2b3ff31735
    4 N41d0743e8eb541faa78bc59ae3b69660
    5 N550f48aabc1c45b584ce04a0f4a05cb1
    6 N679073ffb75a4dc38b243802b4543d42
    7 Ncd4bb6d5914a4ba6ae5a7d7717e8d65f
    8 Neff0cdc044e84da7845f2a33d997daa4
    9 Nf2cc98603982441b87c17cf5eea1f0d0
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 schema:author N900ea0c5ccc34f7584f0acb74aba04e6
    13 schema:citation sg:pub.10.1038/10290
    14 sg:pub.10.1186/1471-2105-7-166
    15 schema:datePublished 2009-06-25
    16 schema:datePublishedReg 2009-06-25
    17 schema:description The effect of genetic mutation on phenotype is of significant interest in genetics. The type of genetic mutation that causes a single amino acid substitution (AAS) in a protein sequence is called a non-synonymous single nucleotide polymorphism (nsSNP). An nsSNP could potentially affect the function of the protein, subsequently altering the carrier's phenotype. This protocol describes the use of the 'Sorting Tolerant From Intolerant' (SIFT) algorithm in predicting whether an AAS affects protein function. To assess the effect of a substitution, SIFT assumes that important positions in a protein sequence have been conserved throughout evolution and therefore substitutions at these positions may affect protein function. Thus, by using sequence homology, SIFT predicts the effects of all possible substitutions at each position in the protein sequence. The protocol typically takes 5–20 min, depending on the input. SIFT is available as an online tool (http://sift-dna.org).
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N1e2cef1c7889428b98c7bb8e173559b9
    22 N890f47f794ab4ff2bf4372cd2eef715a
    23 sg:journal.1037502
    24 schema:keywords SIFT
    25 SIFT algorithm
    26 Sorting Tolerant
    27 acid substitutions
    28 algorithm
    29 amino acid substitutions
    30 carrier phenotype
    31 effect
    32 evolution
    33 function
    34 genetic mutations
    35 genetics
    36 homology
    37 important position
    38 input
    39 interest
    40 intolerant
    41 min
    42 mutations
    43 non-synonymous single nucleotide polymorphisms
    44 non-synonymous variants
    45 nucleotide polymorphisms
    46 online tool
    47 phenotype
    48 polymorphism
    49 position
    50 possible substitution
    51 protein
    52 protein function
    53 protein sequences
    54 protocol
    55 sequence
    56 sequence homology
    57 significant interest
    58 single amino acid substitution
    59 single nucleotide polymorphisms
    60 substitution
    61 tolerant
    62 tool
    63 types
    64 use
    65 variants
    66 schema:name Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm
    67 schema:pagination 1073-1081
    68 schema:productId N365d8e98d7f3431e86b4f0f6f5cb6bab
    69 N3d69c91a707f4c968428cc4485c035f4
    70 N732e27f2ea2d49a886acb11d2860fd0a
    71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015642657
    72 https://doi.org/10.1038/nprot.2009.86
    73 schema:sdDatePublished 2022-05-10T09:58
    74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    75 schema:sdPublisher N6f1b73ee03c141e7be7714bd2cc39b3d
    76 schema:url https://doi.org/10.1038/nprot.2009.86
    77 sgo:license sg:explorer/license/
    78 sgo:sdDataset articles
    79 rdf:type schema:ScholarlyArticle
    80 N157e232847d44f9c88d7b3871213ea31 rdf:first sg:person.01110332674.32
    81 rdf:rest Nf6a3ca8d565549249bcd369a97543544
    82 N167944916e2c4de1beeccf80fdeb0703 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Computer Simulation
    84 rdf:type schema:DefinedTerm
    85 N197b075d2da34fd9915b00d59812fd1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    86 schema:name Amino Acid Sequence
    87 rdf:type schema:DefinedTerm
    88 N1e2cef1c7889428b98c7bb8e173559b9 schema:issueNumber 7
    89 rdf:type schema:PublicationIssue
    90 N281cb13537dd4f1d9da21c2b3ff31735 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Phenotype
    92 rdf:type schema:DefinedTerm
    93 N365d8e98d7f3431e86b4f0f6f5cb6bab schema:name dimensions_id
    94 schema:value pub.1015642657
    95 rdf:type schema:PropertyValue
    96 N3d69c91a707f4c968428cc4485c035f4 schema:name doi
    97 schema:value 10.1038/nprot.2009.86
    98 rdf:type schema:PropertyValue
    99 N41d0743e8eb541faa78bc59ae3b69660 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Amino Acid Substitution
    101 rdf:type schema:DefinedTerm
    102 N550f48aabc1c45b584ce04a0f4a05cb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Molecular Sequence Data
    104 rdf:type schema:DefinedTerm
    105 N679073ffb75a4dc38b243802b4543d42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Algorithms
    107 rdf:type schema:DefinedTerm
    108 N6f1b73ee03c141e7be7714bd2cc39b3d schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 N732e27f2ea2d49a886acb11d2860fd0a schema:name pubmed_id
    111 schema:value 19561590
    112 rdf:type schema:PropertyValue
    113 N890f47f794ab4ff2bf4372cd2eef715a schema:volumeNumber 4
    114 rdf:type schema:PublicationVolume
    115 N900ea0c5ccc34f7584f0acb74aba04e6 rdf:first sg:person.0720326117.36
    116 rdf:rest N157e232847d44f9c88d7b3871213ea31
    117 Ncd4bb6d5914a4ba6ae5a7d7717e8d65f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Internet
    119 rdf:type schema:DefinedTerm
    120 Neff0cdc044e84da7845f2a33d997daa4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Software
    122 rdf:type schema:DefinedTerm
    123 Nf2cc98603982441b87c17cf5eea1f0d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Proteins
    125 rdf:type schema:DefinedTerm
    126 Nf6a3ca8d565549249bcd369a97543544 rdf:first sg:person.011056174642.58
    127 rdf:rest rdf:nil
    128 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Biological Sciences
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Genetics
    133 rdf:type schema:DefinedTerm
    134 sg:grant.2529321 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2009.86
    135 rdf:type schema:MonetaryGrant
    136 sg:journal.1037502 schema:issn 1750-2799
    137 1754-2189
    138 schema:name Nature Protocols
    139 schema:publisher Springer Nature
    140 rdf:type schema:Periodical
    141 sg:person.011056174642.58 schema:affiliation grid-institutes:grid.270240.3
    142 schema:familyName Ng
    143 schema:givenName Pauline C
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011056174642.58
    145 rdf:type schema:Person
    146 sg:person.01110332674.32 schema:affiliation grid-institutes:grid.270240.3
    147 schema:familyName Henikoff
    148 schema:givenName Steven
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110332674.32
    150 rdf:type schema:Person
    151 sg:person.0720326117.36 schema:affiliation grid-institutes:grid.469946.0
    152 schema:familyName Kumar
    153 schema:givenName Prateek
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720326117.36
    155 rdf:type schema:Person
    156 sg:pub.10.1038/10290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008973203
    157 https://doi.org/10.1038/10290
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1186/1471-2105-7-166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008763878
    160 https://doi.org/10.1186/1471-2105-7-166
    161 rdf:type schema:CreativeWork
    162 grid-institutes:grid.270240.3 schema:alternateName Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
    163 schema:name Basic Sciences Division, Howard Hughes Medical Institute, Seattle, Washington, USA
    164 Department of Genomic Medicine, J. Craig Venter Institute, San Diego, California, USA
    165 Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
    166 rdf:type schema:Organization
    167 grid-institutes:grid.469946.0 schema:alternateName Department of Genomic Medicine, J. Craig Venter Institute, San Diego, California, USA
    168 schema:name Department of Genomic Medicine, J. Craig Venter Institute, San Diego, California, USA
    169 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...