Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-06

AUTHORS

Emily Hodges, Michelle Rooks, Zhenyu Xuan, Arindam Bhattacharjee, D Benjamin Gordon, Leonardo Brizuela, W Richard McCombie, Gregory J Hannon

ABSTRACT

Complementary techniques that deepen information content and minimize reagent costs are required to realize the full potential of massively parallel sequencing. Here, we describe a resequencing approach that directs focus to genomic regions of high interest by combining hybridization-based purification of multi-megabase regions with sequencing on the Illumina Genome Analyzer (GA). The capture matrix is created by a microarray on which probes can be programmed as desired to target any non-repeat portion of the genome, while the method requires only a basic familiarity with microarray hybridization. We present a detailed protocol suitable for 1-2 microg of input genomic DNA and highlight key design tips in which high specificity (>65% of reads stem from enriched exons) and high sensitivity (98% targeted base pair coverage) can be achieved. We have successfully applied this to the enrichment of coding regions, in both human and mouse, ranging from 0.5 to 4 Mb in length. From genomic DNA library production to base-called sequences, this procedure takes approximately 9-10 d inclusive of array captures and one Illumina flow cell run. More... »

PAGES

960-974

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nprot.2009.68

DOI

http://dx.doi.org/10.1038/nprot.2009.68

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009828502

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19478811


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Primers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Library", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Hybridization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.", 
            "Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hodges", 
        "givenName": "Emily", 
        "id": "sg:person.0772712112.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772712112.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.", 
            "Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rooks", 
        "givenName": "Michelle", 
        "id": "sg:person.01123142630.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123142630.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xuan", 
        "givenName": "Zhenyu", 
        "id": "sg:person.01225150013.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225150013.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agilent Technologies (United States)", 
          "id": "https://www.grid.ac/institutes/grid.422638.9", 
          "name": [
            "Agilent Technologies Inc., Santa Clara, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharjee", 
        "givenName": "Arindam", 
        "id": "sg:person.01155253712.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155253712.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agilent Technologies (United States)", 
          "id": "https://www.grid.ac/institutes/grid.422638.9", 
          "name": [
            "Agilent Technologies Inc., Santa Clara, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gordon", 
        "givenName": "D Benjamin", 
        "id": "sg:person.01041770560.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041770560.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agilent Technologies (United States)", 
          "id": "https://www.grid.ac/institutes/grid.422638.9", 
          "name": [
            "Agilent Technologies Inc., Santa Clara, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brizuela", 
        "givenName": "Leonardo", 
        "id": "sg:person.0646045313.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646045313.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCombie", 
        "givenName": "W Richard", 
        "id": "sg:person.01130577442.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130577442.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.", 
            "Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hannon", 
        "givenName": "Gregory J", 
        "id": "sg:person.015076500737.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015076500737.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005983602", 
          "https://doi.org/10.1038/nmeth724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005983602", 
          "https://doi.org/10.1038/nmeth724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009647980", 
          "https://doi.org/10.1038/nmeth1109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2007.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012402265", 
          "https://doi.org/10.1038/ng.2007.42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0888-7543(88)90007-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012677419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016969839", 
          "https://doi.org/10.1038/nature07484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021189255", 
          "https://doi.org/10.1038/nmeth.1270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025042325", 
          "https://doi.org/10.1038/nmeth1111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0050254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029364743", 
          "https://doi.org/10.1038/nmeth.1230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034796960", 
          "https://doi.org/10.1038/nature07485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038852448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039570773", 
          "https://doi.org/10.1038/nature07385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040653661", 
          "https://doi.org/10.1038/nbt.1523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044990606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0308-256b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045597694", 
          "https://doi.org/10.1038/nbt0308-256b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045927978", 
          "https://doi.org/10.1038/nmeth1110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0307-50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046363892", 
          "https://doi.org/10.1038/scientificamerican0307-50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047672670", 
          "https://doi.org/10.1038/nature06884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0105-63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051721477", 
          "https://doi.org/10.1038/nmeth0105-63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0105-63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051721477", 
          "https://doi.org/10.1038/nmeth0105-63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052925719", 
          "https://doi.org/10.1038/nature07517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.319.5862.395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062597291"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-06", 
    "datePublishedReg": "2009-06-01", 
    "description": "Complementary techniques that deepen information content and minimize reagent costs are required to realize the full potential of massively parallel sequencing. Here, we describe a resequencing approach that directs focus to genomic regions of high interest by combining hybridization-based purification of multi-megabase regions with sequencing on the Illumina Genome Analyzer (GA). The capture matrix is created by a microarray on which probes can be programmed as desired to target any non-repeat portion of the genome, while the method requires only a basic familiarity with microarray hybridization. We present a detailed protocol suitable for 1-2 microg of input genomic DNA and highlight key design tips in which high specificity (>65% of reads stem from enriched exons) and high sensitivity (98% targeted base pair coverage) can be achieved. We have successfully applied this to the enrichment of coding regions, in both human and mouse, ranging from 0.5 to 4 Mb in length. From genomic DNA library production to base-called sequences, this procedure takes approximately 9-10 d inclusive of array captures and one Illumina flow cell run.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nprot.2009.68", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2435368", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037502", 
        "issn": [
          "1754-2189", 
          "1750-2799"
        ], 
        "name": "Nature Protocols", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing", 
    "pagination": "960-974", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2ed2bfe84fc263595b5ae924dfd851cf6aebc1fce581ea82c8f8edbd08769cda"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19478811"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101284307"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nprot.2009.68"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009828502"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nprot.2009.68", 
      "https://app.dimensions.ai/details/publication/pub.1009828502"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000339_0000000339/records_109513_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nprot.2009.68"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nprot.2009.68'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nprot.2009.68'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nprot.2009.68'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nprot.2009.68'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      21 PREDICATES      62 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nprot.2009.68 schema:about N049d04a45f7a4b6e8aa088363dcc8058
2 N08f10649871d425bb0a419259af8bd8f
3 N38d0423d27c141e9a3201b40c8f5c41e
4 N47d5353148ce43f8bc58eab22c230455
5 N85579c95413643e1a5b0716eba1a47be
6 N94f7c8cf76f24164b09e1fc0f2438935
7 Na8ea11bd9d454d2ca55fb71a6157a898
8 Naededaf2653f45eaa55d05fc9e0cae1f
9 Nd42996a3d4314aa29c8c9e4d599cd585
10 Nd825f79ac40c4944b4575661c1ef7ede
11 Ndc8661d2ba8e46c9b413b09d6bc548d9
12 Nf803bcb10a7e4e408e78a9344df8d7f1
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N3389efea687f416d80d91933c7d1a6e1
16 schema:citation sg:pub.10.1038/nature06884
17 sg:pub.10.1038/nature07385
18 sg:pub.10.1038/nature07484
19 sg:pub.10.1038/nature07485
20 sg:pub.10.1038/nature07517
21 sg:pub.10.1038/nbt.1523
22 sg:pub.10.1038/nbt0308-256b
23 sg:pub.10.1038/ng.2007.42
24 sg:pub.10.1038/nmeth.1230
25 sg:pub.10.1038/nmeth.1270
26 sg:pub.10.1038/nmeth0105-63
27 sg:pub.10.1038/nmeth1109
28 sg:pub.10.1038/nmeth1110
29 sg:pub.10.1038/nmeth1111
30 sg:pub.10.1038/nmeth724
31 sg:pub.10.1038/scientificamerican0307-50
32 https://doi.org/10.1016/0888-7543(88)90007-9
33 https://doi.org/10.1093/bioinformatics/bti774
34 https://doi.org/10.1093/nar/gkn425
35 https://doi.org/10.1126/science.319.5862.395
36 https://doi.org/10.1371/journal.pbio.0050254
37 schema:datePublished 2009-06
38 schema:datePublishedReg 2009-06-01
39 schema:description Complementary techniques that deepen information content and minimize reagent costs are required to realize the full potential of massively parallel sequencing. Here, we describe a resequencing approach that directs focus to genomic regions of high interest by combining hybridization-based purification of multi-megabase regions with sequencing on the Illumina Genome Analyzer (GA). The capture matrix is created by a microarray on which probes can be programmed as desired to target any non-repeat portion of the genome, while the method requires only a basic familiarity with microarray hybridization. We present a detailed protocol suitable for 1-2 microg of input genomic DNA and highlight key design tips in which high specificity (>65% of reads stem from enriched exons) and high sensitivity (98% targeted base pair coverage) can be achieved. We have successfully applied this to the enrichment of coding regions, in both human and mouse, ranging from 0.5 to 4 Mb in length. From genomic DNA library production to base-called sequences, this procedure takes approximately 9-10 d inclusive of array captures and one Illumina flow cell run.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf Nc0a077eae38747818a8de67c056abd82
44 Ne63e8c51e85d42f5ad291a57a3cd5852
45 sg:journal.1037502
46 schema:name Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing
47 schema:pagination 960-974
48 schema:productId N0355a4d868cd4a43adac36666df47e1f
49 N21fca1b50c4a4759bcfa829c14a191ad
50 N9f50e1dc370d4dbea48a2e5a6e46bdab
51 Nc0f9a0c4782c4c5fbffce6213d8beb7f
52 Nd05dfa417d2a4964bbdabc64a818794f
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009828502
54 https://doi.org/10.1038/nprot.2009.68
55 schema:sdDatePublished 2019-04-11T09:20
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N56ae06bf30b344f6bfd81ec74d834149
58 schema:url http://www.nature.com/articles/nprot.2009.68
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0355a4d868cd4a43adac36666df47e1f schema:name readcube_id
63 schema:value 2ed2bfe84fc263595b5ae924dfd851cf6aebc1fce581ea82c8f8edbd08769cda
64 rdf:type schema:PropertyValue
65 N049d04a45f7a4b6e8aa088363dcc8058 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Base Sequence
67 rdf:type schema:DefinedTerm
68 N08f10649871d425bb0a419259af8bd8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Oligonucleotide Array Sequence Analysis
70 rdf:type schema:DefinedTerm
71 N0e441fd56b4842c3ad8d2c313acfbd6c rdf:first sg:person.01225150013.13
72 rdf:rest N5b301f0c848e4dde82c466f58ff08c56
73 N21fca1b50c4a4759bcfa829c14a191ad schema:name pubmed_id
74 schema:value 19478811
75 rdf:type schema:PropertyValue
76 N28ba38cc3b8f493abcf1145359302bd2 rdf:first sg:person.0646045313.99
77 rdf:rest Nfcd0503fb5494a6a9d8e9608067eb254
78 N3389efea687f416d80d91933c7d1a6e1 rdf:first sg:person.0772712112.98
79 rdf:rest N603906fcdca140c29b84382c18014013
80 N38d0423d27c141e9a3201b40c8f5c41e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Mice
82 rdf:type schema:DefinedTerm
83 N47d5353148ce43f8bc58eab22c230455 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Gene Library
85 rdf:type schema:DefinedTerm
86 N56ae06bf30b344f6bfd81ec74d834149 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N5b301f0c848e4dde82c466f58ff08c56 rdf:first sg:person.01155253712.72
89 rdf:rest N957d48a579e74eeab9a28e9e9f9d9e23
90 N603906fcdca140c29b84382c18014013 rdf:first sg:person.01123142630.76
91 rdf:rest N0e441fd56b4842c3ad8d2c313acfbd6c
92 N7ebd33a440104b29853dd7e03f1e7720 rdf:first sg:person.015076500737.82
93 rdf:rest rdf:nil
94 N85579c95413643e1a5b0716eba1a47be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Polymerase Chain Reaction
96 rdf:type schema:DefinedTerm
97 N94f7c8cf76f24164b09e1fc0f2438935 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Nucleic Acid Hybridization
99 rdf:type schema:DefinedTerm
100 N957d48a579e74eeab9a28e9e9f9d9e23 rdf:first sg:person.01041770560.90
101 rdf:rest N28ba38cc3b8f493abcf1145359302bd2
102 N9f50e1dc370d4dbea48a2e5a6e46bdab schema:name doi
103 schema:value 10.1038/nprot.2009.68
104 rdf:type schema:PropertyValue
105 Na8ea11bd9d454d2ca55fb71a6157a898 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Sequence Analysis, DNA
107 rdf:type schema:DefinedTerm
108 Naededaf2653f45eaa55d05fc9e0cae1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Sensitivity and Specificity
110 rdf:type schema:DefinedTerm
111 Nc0a077eae38747818a8de67c056abd82 schema:issueNumber 6
112 rdf:type schema:PublicationIssue
113 Nc0f9a0c4782c4c5fbffce6213d8beb7f schema:name nlm_unique_id
114 schema:value 101284307
115 rdf:type schema:PropertyValue
116 Nd05dfa417d2a4964bbdabc64a818794f schema:name dimensions_id
117 schema:value pub.1009828502
118 rdf:type schema:PropertyValue
119 Nd42996a3d4314aa29c8c9e4d599cd585 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Humans
121 rdf:type schema:DefinedTerm
122 Nd825f79ac40c4944b4575661c1ef7ede schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Genomics
124 rdf:type schema:DefinedTerm
125 Ndc8661d2ba8e46c9b413b09d6bc548d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Animals
127 rdf:type schema:DefinedTerm
128 Ne63e8c51e85d42f5ad291a57a3cd5852 schema:volumeNumber 4
129 rdf:type schema:PublicationVolume
130 Nf803bcb10a7e4e408e78a9344df8d7f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name DNA Primers
132 rdf:type schema:DefinedTerm
133 Nfcd0503fb5494a6a9d8e9608067eb254 rdf:first sg:person.01130577442.35
134 rdf:rest N7ebd33a440104b29853dd7e03f1e7720
135 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biological Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
139 schema:name Genetics
140 rdf:type schema:DefinedTerm
141 sg:grant.2435368 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2009.68
142 rdf:type schema:MonetaryGrant
143 sg:journal.1037502 schema:issn 1750-2799
144 1754-2189
145 schema:name Nature Protocols
146 rdf:type schema:Periodical
147 sg:person.01041770560.90 schema:affiliation https://www.grid.ac/institutes/grid.422638.9
148 schema:familyName Gordon
149 schema:givenName D Benjamin
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041770560.90
151 rdf:type schema:Person
152 sg:person.01123142630.76 schema:affiliation https://www.grid.ac/institutes/grid.225279.9
153 schema:familyName Rooks
154 schema:givenName Michelle
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123142630.76
156 rdf:type schema:Person
157 sg:person.01130577442.35 schema:affiliation https://www.grid.ac/institutes/grid.225279.9
158 schema:familyName McCombie
159 schema:givenName W Richard
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130577442.35
161 rdf:type schema:Person
162 sg:person.01155253712.72 schema:affiliation https://www.grid.ac/institutes/grid.422638.9
163 schema:familyName Bhattacharjee
164 schema:givenName Arindam
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155253712.72
166 rdf:type schema:Person
167 sg:person.01225150013.13 schema:affiliation https://www.grid.ac/institutes/grid.225279.9
168 schema:familyName Xuan
169 schema:givenName Zhenyu
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225150013.13
171 rdf:type schema:Person
172 sg:person.015076500737.82 schema:affiliation https://www.grid.ac/institutes/grid.225279.9
173 schema:familyName Hannon
174 schema:givenName Gregory J
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015076500737.82
176 rdf:type schema:Person
177 sg:person.0646045313.99 schema:affiliation https://www.grid.ac/institutes/grid.422638.9
178 schema:familyName Brizuela
179 schema:givenName Leonardo
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646045313.99
181 rdf:type schema:Person
182 sg:person.0772712112.98 schema:affiliation https://www.grid.ac/institutes/grid.225279.9
183 schema:familyName Hodges
184 schema:givenName Emily
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772712112.98
186 rdf:type schema:Person
187 sg:pub.10.1038/nature06884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047672670
188 https://doi.org/10.1038/nature06884
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature07385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039570773
191 https://doi.org/10.1038/nature07385
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nature07484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016969839
194 https://doi.org/10.1038/nature07484
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nature07485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034796960
197 https://doi.org/10.1038/nature07485
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nature07517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925719
200 https://doi.org/10.1038/nature07517
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nbt.1523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040653661
203 https://doi.org/10.1038/nbt.1523
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nbt0308-256b schema:sameAs https://app.dimensions.ai/details/publication/pub.1045597694
206 https://doi.org/10.1038/nbt0308-256b
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/ng.2007.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012402265
209 https://doi.org/10.1038/ng.2007.42
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nmeth.1230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029364743
212 https://doi.org/10.1038/nmeth.1230
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nmeth.1270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021189255
215 https://doi.org/10.1038/nmeth.1270
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/nmeth0105-63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051721477
218 https://doi.org/10.1038/nmeth0105-63
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/nmeth1109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009647980
221 https://doi.org/10.1038/nmeth1109
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nmeth1110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045927978
224 https://doi.org/10.1038/nmeth1110
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/nmeth1111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042325
227 https://doi.org/10.1038/nmeth1111
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nmeth724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005983602
230 https://doi.org/10.1038/nmeth724
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/scientificamerican0307-50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046363892
233 https://doi.org/10.1038/scientificamerican0307-50
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/0888-7543(88)90007-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012677419
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/bioinformatics/bti774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038852448
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/nar/gkn425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044990606
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1126/science.319.5862.395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062597291
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1371/journal.pbio.0050254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942453
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.225279.9 schema:alternateName Cold Spring Harbor Laboratory
246 schema:name Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.
247 Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.422638.9 schema:alternateName Agilent Technologies (United States)
250 schema:name Agilent Technologies Inc., Santa Clara, California, USA.
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...