Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-06

AUTHORS

Emily Hodges, Michelle Rooks, Zhenyu Xuan, Arindam Bhattacharjee, D Benjamin Gordon, Leonardo Brizuela, W Richard McCombie, Gregory J Hannon

ABSTRACT

Complementary techniques that deepen information content and minimize reagent costs are required to realize the full potential of massively parallel sequencing. Here, we describe a resequencing approach that directs focus to genomic regions of high interest by combining hybridization-based purification of multi-megabase regions with sequencing on the Illumina Genome Analyzer (GA). The capture matrix is created by a microarray on which probes can be programmed as desired to target any non-repeat portion of the genome, while the method requires only a basic familiarity with microarray hybridization. We present a detailed protocol suitable for 1-2 microg of input genomic DNA and highlight key design tips in which high specificity (>65% of reads stem from enriched exons) and high sensitivity (98% targeted base pair coverage) can be achieved. We have successfully applied this to the enrichment of coding regions, in both human and mouse, ranging from 0.5 to 4 Mb in length. From genomic DNA library production to base-called sequences, this procedure takes approximately 9-10 d inclusive of array captures and one Illumina flow cell run. More... »

PAGES

960-974

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nprot.2009.68

DOI

http://dx.doi.org/10.1038/nprot.2009.68

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009828502

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19478811


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Primers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Library", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Hybridization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.", 
            "Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hodges", 
        "givenName": "Emily", 
        "id": "sg:person.0772712112.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772712112.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.", 
            "Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rooks", 
        "givenName": "Michelle", 
        "id": "sg:person.01123142630.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123142630.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xuan", 
        "givenName": "Zhenyu", 
        "id": "sg:person.01225150013.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225150013.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agilent Technologies (United States)", 
          "id": "https://www.grid.ac/institutes/grid.422638.9", 
          "name": [
            "Agilent Technologies Inc., Santa Clara, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharjee", 
        "givenName": "Arindam", 
        "id": "sg:person.01155253712.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155253712.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agilent Technologies (United States)", 
          "id": "https://www.grid.ac/institutes/grid.422638.9", 
          "name": [
            "Agilent Technologies Inc., Santa Clara, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gordon", 
        "givenName": "D Benjamin", 
        "id": "sg:person.01041770560.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041770560.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agilent Technologies (United States)", 
          "id": "https://www.grid.ac/institutes/grid.422638.9", 
          "name": [
            "Agilent Technologies Inc., Santa Clara, California, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brizuela", 
        "givenName": "Leonardo", 
        "id": "sg:person.0646045313.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646045313.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCombie", 
        "givenName": "W Richard", 
        "id": "sg:person.01130577442.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130577442.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.", 
            "Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hannon", 
        "givenName": "Gregory J", 
        "id": "sg:person.015076500737.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015076500737.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005983602", 
          "https://doi.org/10.1038/nmeth724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005983602", 
          "https://doi.org/10.1038/nmeth724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009647980", 
          "https://doi.org/10.1038/nmeth1109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2007.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012402265", 
          "https://doi.org/10.1038/ng.2007.42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0888-7543(88)90007-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012677419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016969839", 
          "https://doi.org/10.1038/nature07484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021189255", 
          "https://doi.org/10.1038/nmeth.1270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025042325", 
          "https://doi.org/10.1038/nmeth1111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0050254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029364743", 
          "https://doi.org/10.1038/nmeth.1230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034796960", 
          "https://doi.org/10.1038/nature07485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038852448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039570773", 
          "https://doi.org/10.1038/nature07385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040653661", 
          "https://doi.org/10.1038/nbt.1523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044990606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0308-256b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045597694", 
          "https://doi.org/10.1038/nbt0308-256b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045927978", 
          "https://doi.org/10.1038/nmeth1110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0307-50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046363892", 
          "https://doi.org/10.1038/scientificamerican0307-50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047672670", 
          "https://doi.org/10.1038/nature06884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0105-63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051721477", 
          "https://doi.org/10.1038/nmeth0105-63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0105-63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051721477", 
          "https://doi.org/10.1038/nmeth0105-63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052925719", 
          "https://doi.org/10.1038/nature07517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.319.5862.395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062597291"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-06", 
    "datePublishedReg": "2009-06-01", 
    "description": "Complementary techniques that deepen information content and minimize reagent costs are required to realize the full potential of massively parallel sequencing. Here, we describe a resequencing approach that directs focus to genomic regions of high interest by combining hybridization-based purification of multi-megabase regions with sequencing on the Illumina Genome Analyzer (GA). The capture matrix is created by a microarray on which probes can be programmed as desired to target any non-repeat portion of the genome, while the method requires only a basic familiarity with microarray hybridization. We present a detailed protocol suitable for 1-2 microg of input genomic DNA and highlight key design tips in which high specificity (>65% of reads stem from enriched exons) and high sensitivity (98% targeted base pair coverage) can be achieved. We have successfully applied this to the enrichment of coding regions, in both human and mouse, ranging from 0.5 to 4 Mb in length. From genomic DNA library production to base-called sequences, this procedure takes approximately 9-10 d inclusive of array captures and one Illumina flow cell run.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nprot.2009.68", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2435368", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037502", 
        "issn": [
          "1754-2189", 
          "1750-2799"
        ], 
        "name": "Nature Protocols", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing", 
    "pagination": "960-974", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2ed2bfe84fc263595b5ae924dfd851cf6aebc1fce581ea82c8f8edbd08769cda"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19478811"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101284307"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nprot.2009.68"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009828502"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nprot.2009.68", 
      "https://app.dimensions.ai/details/publication/pub.1009828502"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000339_0000000339/records_109513_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nprot.2009.68"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nprot.2009.68'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nprot.2009.68'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nprot.2009.68'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nprot.2009.68'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      21 PREDICATES      62 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nprot.2009.68 schema:about N0cf32948ff7245b38eacf5cd8a5996a8
2 N159da691655645a699c1be5a0a246575
3 N29c22484ec1c4203a0bc104876adbdec
4 N2c55659620444285b5f059fe511aab0d
5 N2c8867b6cce040b7a2ad15e8de36aa55
6 N5bacc6e030ec4251bfd233489bac70de
7 N73fc39d5b5a346a796286e52a36e9c62
8 N75f8ad04f871453e836fc9eef50e67db
9 N7843b4ab91db41519ea7e82e27f27caf
10 Ne1acbee5f49d47f9a9ccea93379b9d46
11 Ne45fa07d521f48b085e7bc36b2cb81dc
12 Nfc1e64baf3814c798aa0d2f68896f166
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N22500cc3f4ad48349042c30aa90a7a11
16 schema:citation sg:pub.10.1038/nature06884
17 sg:pub.10.1038/nature07385
18 sg:pub.10.1038/nature07484
19 sg:pub.10.1038/nature07485
20 sg:pub.10.1038/nature07517
21 sg:pub.10.1038/nbt.1523
22 sg:pub.10.1038/nbt0308-256b
23 sg:pub.10.1038/ng.2007.42
24 sg:pub.10.1038/nmeth.1230
25 sg:pub.10.1038/nmeth.1270
26 sg:pub.10.1038/nmeth0105-63
27 sg:pub.10.1038/nmeth1109
28 sg:pub.10.1038/nmeth1110
29 sg:pub.10.1038/nmeth1111
30 sg:pub.10.1038/nmeth724
31 sg:pub.10.1038/scientificamerican0307-50
32 https://doi.org/10.1016/0888-7543(88)90007-9
33 https://doi.org/10.1093/bioinformatics/bti774
34 https://doi.org/10.1093/nar/gkn425
35 https://doi.org/10.1126/science.319.5862.395
36 https://doi.org/10.1371/journal.pbio.0050254
37 schema:datePublished 2009-06
38 schema:datePublishedReg 2009-06-01
39 schema:description Complementary techniques that deepen information content and minimize reagent costs are required to realize the full potential of massively parallel sequencing. Here, we describe a resequencing approach that directs focus to genomic regions of high interest by combining hybridization-based purification of multi-megabase regions with sequencing on the Illumina Genome Analyzer (GA). The capture matrix is created by a microarray on which probes can be programmed as desired to target any non-repeat portion of the genome, while the method requires only a basic familiarity with microarray hybridization. We present a detailed protocol suitable for 1-2 microg of input genomic DNA and highlight key design tips in which high specificity (>65% of reads stem from enriched exons) and high sensitivity (98% targeted base pair coverage) can be achieved. We have successfully applied this to the enrichment of coding regions, in both human and mouse, ranging from 0.5 to 4 Mb in length. From genomic DNA library production to base-called sequences, this procedure takes approximately 9-10 d inclusive of array captures and one Illumina flow cell run.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N33056d9189914e2aa381490eb7c7b6e4
44 Ncdc869ecac23401d8c7d812fea28378c
45 sg:journal.1037502
46 schema:name Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing
47 schema:pagination 960-974
48 schema:productId N11cfdc1e558b4a3896dbb677a6272e81
49 N84a9d5ee201e4ca7aa2f2e1e6bcbb5f8
50 Na86e9079568841ba8982f947470d0a00
51 Nce60a8d9528d428dafc008a93e7ebf66
52 Ned74ae4fe19346029bed0baf9276d4f4
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009828502
54 https://doi.org/10.1038/nprot.2009.68
55 schema:sdDatePublished 2019-04-11T09:20
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nf0890b3175984775a797b786403a4993
58 schema:url http://www.nature.com/articles/nprot.2009.68
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0cf32948ff7245b38eacf5cd8a5996a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Genomics
64 rdf:type schema:DefinedTerm
65 N11cfdc1e558b4a3896dbb677a6272e81 schema:name nlm_unique_id
66 schema:value 101284307
67 rdf:type schema:PropertyValue
68 N159da691655645a699c1be5a0a246575 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Nucleic Acid Hybridization
70 rdf:type schema:DefinedTerm
71 N1629bd93678040bcaff5da1bb98538a8 rdf:first sg:person.01225150013.13
72 rdf:rest N584088ab8c0b4d27af833741fe530d1f
73 N22500cc3f4ad48349042c30aa90a7a11 rdf:first sg:person.0772712112.98
74 rdf:rest Nd776262f03e949c8aa4057940ffbedcb
75 N29c22484ec1c4203a0bc104876adbdec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Polymerase Chain Reaction
77 rdf:type schema:DefinedTerm
78 N2c55659620444285b5f059fe511aab0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Base Sequence
80 rdf:type schema:DefinedTerm
81 N2c8867b6cce040b7a2ad15e8de36aa55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name DNA Primers
83 rdf:type schema:DefinedTerm
84 N33056d9189914e2aa381490eb7c7b6e4 schema:volumeNumber 4
85 rdf:type schema:PublicationVolume
86 N379edfd6bddf426fa502cce3ea398c02 rdf:first sg:person.01130577442.35
87 rdf:rest N9356a83b81f04652b9e095fcf481090b
88 N584088ab8c0b4d27af833741fe530d1f rdf:first sg:person.01155253712.72
89 rdf:rest N772fc2cae1064f8787daacd00be53a15
90 N5bacc6e030ec4251bfd233489bac70de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Oligonucleotide Array Sequence Analysis
92 rdf:type schema:DefinedTerm
93 N73fc39d5b5a346a796286e52a36e9c62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Humans
95 rdf:type schema:DefinedTerm
96 N75f8ad04f871453e836fc9eef50e67db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Gene Library
98 rdf:type schema:DefinedTerm
99 N772fc2cae1064f8787daacd00be53a15 rdf:first sg:person.01041770560.90
100 rdf:rest Nb59cd56d6d6b42d18a7fbebad3be0f49
101 N7843b4ab91db41519ea7e82e27f27caf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Sensitivity and Specificity
103 rdf:type schema:DefinedTerm
104 N84a9d5ee201e4ca7aa2f2e1e6bcbb5f8 schema:name dimensions_id
105 schema:value pub.1009828502
106 rdf:type schema:PropertyValue
107 N9356a83b81f04652b9e095fcf481090b rdf:first sg:person.015076500737.82
108 rdf:rest rdf:nil
109 Na86e9079568841ba8982f947470d0a00 schema:name doi
110 schema:value 10.1038/nprot.2009.68
111 rdf:type schema:PropertyValue
112 Nb59cd56d6d6b42d18a7fbebad3be0f49 rdf:first sg:person.0646045313.99
113 rdf:rest N379edfd6bddf426fa502cce3ea398c02
114 Ncdc869ecac23401d8c7d812fea28378c schema:issueNumber 6
115 rdf:type schema:PublicationIssue
116 Nce60a8d9528d428dafc008a93e7ebf66 schema:name readcube_id
117 schema:value 2ed2bfe84fc263595b5ae924dfd851cf6aebc1fce581ea82c8f8edbd08769cda
118 rdf:type schema:PropertyValue
119 Nd776262f03e949c8aa4057940ffbedcb rdf:first sg:person.01123142630.76
120 rdf:rest N1629bd93678040bcaff5da1bb98538a8
121 Ne1acbee5f49d47f9a9ccea93379b9d46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Sequence Analysis, DNA
123 rdf:type schema:DefinedTerm
124 Ne45fa07d521f48b085e7bc36b2cb81dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Animals
126 rdf:type schema:DefinedTerm
127 Ned74ae4fe19346029bed0baf9276d4f4 schema:name pubmed_id
128 schema:value 19478811
129 rdf:type schema:PropertyValue
130 Nf0890b3175984775a797b786403a4993 schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 Nfc1e64baf3814c798aa0d2f68896f166 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Mice
134 rdf:type schema:DefinedTerm
135 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biological Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
139 schema:name Genetics
140 rdf:type schema:DefinedTerm
141 sg:grant.2435368 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2009.68
142 rdf:type schema:MonetaryGrant
143 sg:journal.1037502 schema:issn 1750-2799
144 1754-2189
145 schema:name Nature Protocols
146 rdf:type schema:Periodical
147 sg:person.01041770560.90 schema:affiliation https://www.grid.ac/institutes/grid.422638.9
148 schema:familyName Gordon
149 schema:givenName D Benjamin
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041770560.90
151 rdf:type schema:Person
152 sg:person.01123142630.76 schema:affiliation https://www.grid.ac/institutes/grid.225279.9
153 schema:familyName Rooks
154 schema:givenName Michelle
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123142630.76
156 rdf:type schema:Person
157 sg:person.01130577442.35 schema:affiliation https://www.grid.ac/institutes/grid.225279.9
158 schema:familyName McCombie
159 schema:givenName W Richard
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130577442.35
161 rdf:type schema:Person
162 sg:person.01155253712.72 schema:affiliation https://www.grid.ac/institutes/grid.422638.9
163 schema:familyName Bhattacharjee
164 schema:givenName Arindam
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155253712.72
166 rdf:type schema:Person
167 sg:person.01225150013.13 schema:affiliation https://www.grid.ac/institutes/grid.225279.9
168 schema:familyName Xuan
169 schema:givenName Zhenyu
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225150013.13
171 rdf:type schema:Person
172 sg:person.015076500737.82 schema:affiliation https://www.grid.ac/institutes/grid.225279.9
173 schema:familyName Hannon
174 schema:givenName Gregory J
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015076500737.82
176 rdf:type schema:Person
177 sg:person.0646045313.99 schema:affiliation https://www.grid.ac/institutes/grid.422638.9
178 schema:familyName Brizuela
179 schema:givenName Leonardo
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646045313.99
181 rdf:type schema:Person
182 sg:person.0772712112.98 schema:affiliation https://www.grid.ac/institutes/grid.225279.9
183 schema:familyName Hodges
184 schema:givenName Emily
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772712112.98
186 rdf:type schema:Person
187 sg:pub.10.1038/nature06884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047672670
188 https://doi.org/10.1038/nature06884
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature07385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039570773
191 https://doi.org/10.1038/nature07385
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nature07484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016969839
194 https://doi.org/10.1038/nature07484
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nature07485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034796960
197 https://doi.org/10.1038/nature07485
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nature07517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925719
200 https://doi.org/10.1038/nature07517
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nbt.1523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040653661
203 https://doi.org/10.1038/nbt.1523
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nbt0308-256b schema:sameAs https://app.dimensions.ai/details/publication/pub.1045597694
206 https://doi.org/10.1038/nbt0308-256b
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/ng.2007.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012402265
209 https://doi.org/10.1038/ng.2007.42
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nmeth.1230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029364743
212 https://doi.org/10.1038/nmeth.1230
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nmeth.1270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021189255
215 https://doi.org/10.1038/nmeth.1270
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/nmeth0105-63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051721477
218 https://doi.org/10.1038/nmeth0105-63
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/nmeth1109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009647980
221 https://doi.org/10.1038/nmeth1109
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nmeth1110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045927978
224 https://doi.org/10.1038/nmeth1110
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/nmeth1111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042325
227 https://doi.org/10.1038/nmeth1111
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nmeth724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005983602
230 https://doi.org/10.1038/nmeth724
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/scientificamerican0307-50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046363892
233 https://doi.org/10.1038/scientificamerican0307-50
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/0888-7543(88)90007-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012677419
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/bioinformatics/bti774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038852448
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/nar/gkn425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044990606
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1126/science.319.5862.395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062597291
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1371/journal.pbio.0050254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942453
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.225279.9 schema:alternateName Cold Spring Harbor Laboratory
246 schema:name Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.
247 Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.422638.9 schema:alternateName Agilent Technologies (United States)
250 schema:name Agilent Technologies Inc., Santa Clara, California, USA.
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...