Ontology type: schema:ScholarlyArticle
2009-01
AUTHORSDa Wei Huang, Brad T Sherman, Richard A Lempicki
ABSTRACTDAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies. More... »
PAGES44
http://scigraph.springernature.com/pub.10.1038/nprot.2008.211
DOIhttp://dx.doi.org/10.1038/nprot.2008.211
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1039987283
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/19131956
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Computational Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Data Interpretation, Statistical",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genes",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genomics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Internet",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Software",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Laboratory of Immunopathogenesis and Bioinformatics, Clinical Services Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland 21702, USA."
],
"type": "Organization"
},
"familyName": "Da Wei Huang",
"id": "sg:person.011667644635.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011667644635.83"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Laboratory of Immunopathogenesis and Bioinformatics, Clinical Services Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland 21702, USA."
],
"type": "Organization"
},
"familyName": "Sherman",
"givenName": "Brad T",
"id": "sg:person.01322514467.55",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322514467.55"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Laboratory of Immunopathogenesis and Bioinformatics, Clinical Services Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland 21702, USA."
],
"type": "Organization"
},
"familyName": "Lempicki",
"givenName": "Richard A",
"id": "sg:person.0716662073.55",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716662073.55"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1186/gb-2003-4-10-r70",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001293245",
"https://doi.org/10.1186/gb-2003-4-10-r70"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btg455",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001761938"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkm415",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003264848"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkh409",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015906494"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-6-189",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016524045",
"https://doi.org/10.1186/1471-2105-6-189"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-6-189",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016524045",
"https://doi.org/10.1186/1471-2105-6-189"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2003-4-5-p3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021292424",
"https://doi.org/10.1186/gb-2003-4-5-p3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/bth088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022171874"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2007-8-9-r183",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027884417",
"https://doi.org/10.1186/gb-2007-8-9-r183"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.142287999",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027915405"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2004-5-12-r101",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030306020",
"https://doi.org/10.1186/gb-2004-5-12-r101"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gki454",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033041691"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.0506580102",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037705714"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.0506580102",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037705714"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-8-426",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037731520",
"https://doi.org/10.1186/1471-2105-8-426"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-8-426",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037731520",
"https://doi.org/10.1186/1471-2105-8-426"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-6-168",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047729779",
"https://doi.org/10.1186/1471-2105-6-168"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/bti565",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050298763"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.6026/97320630002428",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1073593888"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-01",
"datePublishedReg": "2009-01-01",
"description": "DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.",
"genre": "research_article",
"id": "sg:pub.10.1038/nprot.2008.211",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.2427747",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1037502",
"issn": [
"1754-2189",
"1750-2799"
],
"name": "Nature Protocols",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "4"
}
],
"name": "Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources",
"pagination": "44",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"be7ba210f9eb9661b068cedd2c95dddc0aaf89057fdc8ccbbcc4557099756304"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"19131956"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101284307"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/nprot.2008.211"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1039987283"
]
}
],
"sameAs": [
"https://doi.org/10.1038/nprot.2008.211",
"https://app.dimensions.ai/details/publication/pub.1039987283"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T13:00",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000429.jsonl",
"type": "ScholarlyArticle",
"url": "https://www.nature.com/articles/nprot.2008.211"
}
]
Download the RDF metadata as:Â json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nprot.2008.211'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nprot.2008.211'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nprot.2008.211'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nprot.2008.211'
This table displays all metadata directly associated to this object as RDF triples.
166 TRIPLES
21 PREDICATES
51 URIs
27 LITERALS
15 BLANK NODES