AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-06

AUTHORS

Marnik Vuylsteke, Johan D Peleman, Michiel JT van Eijk

ABSTRACT

Although DNA microarrays are currently the standard tool for genome-wide expression analysis, their application is limited to organisms for which the complete genome sequence or large collections of known transcript sequences are available. Here, we describe a protocol for cDNA-AFLP, an AFLP-based transcript profiling method that allows genome-wide expression analysis in any species without the need for prior sequence knowledge. In essence, the cDNA-AFLP method involves reverse transcription of mRNA into double-stranded cDNA, followed by restriction digestion, ligation of specific adapters and fractionation of this mixture of cDNA fragments into smaller subsets by selective PCR amplification. The resulting cDNA-AFLP fragments are separated on high-resolution gels, and visualization of cDNA-AFLP fingerprints is described using either a conventional autoradiography platform or an automated LI-COR system. Observed differences in band intensities between samples provide a good measure of the relative differences in the gene expression levels. Identification of differentially expressed genes can be accomplished by purifying cDNA-AFLP fragments from sequence gels and subsequent sequencing. This method has found widespread use as an attractive technology for gene discovery on the basis of fragment detection and for temporal quantitative gene expression analysis. The protocol can be completed in 3-4 d. More... »

PAGES

1399-1413

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nprot.2007.174

DOI

http://dx.doi.org/10.1038/nprot.2007.174

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035033499

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17545977


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Restriction Enzymes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Complementary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Amplification Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ghent University", 
          "id": "https://www.grid.ac/institutes/grid.5342.0", 
          "name": [
            "Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.", 
            "Department of Molecular Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vuylsteke", 
        "givenName": "Marnik", 
        "id": "sg:person.0667001423.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667001423.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KeyGene (Netherlands)", 
          "id": "https://www.grid.ac/institutes/grid.425600.5", 
          "name": [
            "Keygene N.V., Agro Business Park 90, NL 6708 PW Wageningen, The Netherlands."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peleman", 
        "givenName": "Johan D", 
        "id": "sg:person.01261207632.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261207632.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KeyGene (Netherlands)", 
          "id": "https://www.grid.ac/institutes/grid.425600.5", 
          "name": [
            "Keygene N.V., Agro Business Park 90, NL 6708 PW Wageningen, The Netherlands."
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Eijk", 
        "givenName": "Michiel JT", 
        "id": "sg:person.07715552224.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715552224.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1385/mb:30:1:031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002974799", 
          "https://doi.org/10.1385/mb:30:1:031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rvsc.2004.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003626790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1119(03)00713-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004876272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1119(03)00713-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004876272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007360505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.2006.00482.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012159337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.12.6.963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015267840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-005-0953-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016912979", 
          "https://doi.org/10.1007/s11103-005-0953-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.2136610100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019144085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.7.1616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020258336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.222561199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020296370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021625478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1032967100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023103242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fgb.2005.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023591176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.1996.9050745.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024275878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2004.02156.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027909398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/76469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028559169", 
          "https://doi.org/10.1038/76469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/76469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028559169", 
          "https://doi.org/10.1038/76469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2005.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028625042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029603050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.2001.02567.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030266556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007468801806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034940111", 
          "https://doi.org/10.1023/a:1007468801806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471142727.mb25b05s57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035930352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erh030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038120786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0888-7543(03)00179-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040086053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0888-7543(03)00179-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040086053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2005.02630.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040353157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2005.02630.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040353157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.2002.01345.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041721770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-004-0275-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041819721", 
          "https://doi.org/10.1007/s11103-004-0275-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mce.2005.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041866256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mce.2005.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041866256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/23.21.4407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042685674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-5266(00)00149-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049260724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050936376", 
          "https://doi.org/10.1038/nprot.2007.175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/eri299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052167717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/153623103322246548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059215045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/mpmi-19-0567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060078378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1354393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062477287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/97222bm03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083050163"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-06", 
    "datePublishedReg": "2007-06-01", 
    "description": "Although DNA microarrays are currently the standard tool for genome-wide expression analysis, their application is limited to organisms for which the complete genome sequence or large collections of known transcript sequences are available. Here, we describe a protocol for cDNA-AFLP, an AFLP-based transcript profiling method that allows genome-wide expression analysis in any species without the need for prior sequence knowledge. In essence, the cDNA-AFLP method involves reverse transcription of mRNA into double-stranded cDNA, followed by restriction digestion, ligation of specific adapters and fractionation of this mixture of cDNA fragments into smaller subsets by selective PCR amplification. The resulting cDNA-AFLP fragments are separated on high-resolution gels, and visualization of cDNA-AFLP fingerprints is described using either a conventional autoradiography platform or an automated LI-COR system. Observed differences in band intensities between samples provide a good measure of the relative differences in the gene expression levels. Identification of differentially expressed genes can be accomplished by purifying cDNA-AFLP fragments from sequence gels and subsequent sequencing. This method has found widespread use as an attractive technology for gene discovery on the basis of fragment detection and for temporal quantitative gene expression analysis. The protocol can be completed in 3-4 d.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nprot.2007.174", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037502", 
        "issn": [
          "1754-2189", 
          "1750-2799"
        ], 
        "name": "Nature Protocols", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis", 
    "pagination": "1399-1413", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a6e2e8171bad98f50e66fa788a6d83e518b903ef5e2254f07dc60a07a2bc6001"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17545977"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101284307"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nprot.2007.174"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035033499"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nprot.2007.174", 
      "https://app.dimensions.ai/details/publication/pub.1035033499"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nprot.2007.174"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nprot.2007.174'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nprot.2007.174'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nprot.2007.174'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nprot.2007.174'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      72 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nprot.2007.174 schema:about N3668394bcf734125918c8692d1fe6b4e
2 N6a2b6a3184c84bd29afeca7fe8c379ab
3 N813e881e3eda48029d749c3f76368576
4 N89d4ef89061d4df6b2d1c8d08cb9bb60
5 Na9ba3364a12c42718686cf9d50f93d2c
6 Nb294db3d224a474d8ac7b25f18a0c600
7 Nd8881f92f89841259793e60ff0a19c35
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N406e386a56684d44b2626abd8ee67694
11 schema:citation sg:pub.10.1007/s11103-004-0275-2
12 sg:pub.10.1007/s11103-005-0953-8
13 sg:pub.10.1023/a:1007468801806
14 sg:pub.10.1038/76469
15 sg:pub.10.1038/nprot.2007.175
16 sg:pub.10.1385/mb:30:1:031
17 https://doi.org/10.1002/0471142727.mb25b05s57
18 https://doi.org/10.1016/j.fgb.2005.11.001
19 https://doi.org/10.1016/j.mce.2005.09.006
20 https://doi.org/10.1016/j.mimet.2005.04.002
21 https://doi.org/10.1016/j.rvsc.2004.11.006
22 https://doi.org/10.1016/s0378-1119(03)00713-3
23 https://doi.org/10.1016/s0888-7543(03)00179-4
24 https://doi.org/10.1016/s1369-5266(00)00149-7
25 https://doi.org/10.1046/j.1365-2958.2001.02567.x
26 https://doi.org/10.1046/j.1365-313x.1996.9050745.x
27 https://doi.org/10.1046/j.1365-313x.2002.01345.x
28 https://doi.org/10.1073/pnas.1032967100
29 https://doi.org/10.1073/pnas.2136610100
30 https://doi.org/10.1073/pnas.222561199
31 https://doi.org/10.1089/153623103322246548
32 https://doi.org/10.1093/bioinformatics/btg090
33 https://doi.org/10.1093/bioinformatics/btg491
34 https://doi.org/10.1093/bioinformatics/bti393
35 https://doi.org/10.1093/jxb/erh030
36 https://doi.org/10.1093/jxb/eri299
37 https://doi.org/10.1093/nar/23.21.4407
38 https://doi.org/10.1093/nar/29.7.1616
39 https://doi.org/10.1094/mpmi-19-0567
40 https://doi.org/10.1105/tpc.12.6.963
41 https://doi.org/10.1111/j.1365-313x.2004.02156.x
42 https://doi.org/10.1111/j.1365-313x.2005.02630.x
43 https://doi.org/10.1111/j.1574-6968.2006.00482.x
44 https://doi.org/10.1126/science.1354393
45 https://doi.org/10.1126/science.270.5235.484
46 https://doi.org/10.2144/97222bm03
47 schema:datePublished 2007-06
48 schema:datePublishedReg 2007-06-01
49 schema:description Although DNA microarrays are currently the standard tool for genome-wide expression analysis, their application is limited to organisms for which the complete genome sequence or large collections of known transcript sequences are available. Here, we describe a protocol for cDNA-AFLP, an AFLP-based transcript profiling method that allows genome-wide expression analysis in any species without the need for prior sequence knowledge. In essence, the cDNA-AFLP method involves reverse transcription of mRNA into double-stranded cDNA, followed by restriction digestion, ligation of specific adapters and fractionation of this mixture of cDNA fragments into smaller subsets by selective PCR amplification. The resulting cDNA-AFLP fragments are separated on high-resolution gels, and visualization of cDNA-AFLP fingerprints is described using either a conventional autoradiography platform or an automated LI-COR system. Observed differences in band intensities between samples provide a good measure of the relative differences in the gene expression levels. Identification of differentially expressed genes can be accomplished by purifying cDNA-AFLP fragments from sequence gels and subsequent sequencing. This method has found widespread use as an attractive technology for gene discovery on the basis of fragment detection and for temporal quantitative gene expression analysis. The protocol can be completed in 3-4 d.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf N6a4b8cb2b87148b7a61e880f80561752
54 N7d64608ab2334b4aae06defb97c2b02c
55 sg:journal.1037502
56 schema:name AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis
57 schema:pagination 1399-1413
58 schema:productId N177e4736c2364ae1aeb936d5ae997896
59 N32ab226fee9b42fbbc89b64dfe641613
60 N348823e6da3147afbb1613aff85cc3a5
61 N42bd24755c2b41a6a76fbf628cb01b0f
62 N85c8cad3b4aa40e489969e8e31a3abf1
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035033499
64 https://doi.org/10.1038/nprot.2007.174
65 schema:sdDatePublished 2019-04-10T19:45
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Nb5322f99bca64508a73eaa6b1e0ec4f8
68 schema:url http://www.nature.com/articles/nprot.2007.174
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N177e4736c2364ae1aeb936d5ae997896 schema:name doi
73 schema:value 10.1038/nprot.2007.174
74 rdf:type schema:PropertyValue
75 N32ab226fee9b42fbbc89b64dfe641613 schema:name readcube_id
76 schema:value a6e2e8171bad98f50e66fa788a6d83e518b903ef5e2254f07dc60a07a2bc6001
77 rdf:type schema:PropertyValue
78 N348823e6da3147afbb1613aff85cc3a5 schema:name nlm_unique_id
79 schema:value 101284307
80 rdf:type schema:PropertyValue
81 N3668394bcf734125918c8692d1fe6b4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name DNA, Complementary
83 rdf:type schema:DefinedTerm
84 N406e386a56684d44b2626abd8ee67694 rdf:first sg:person.0667001423.18
85 rdf:rest Nf990fc71549d47638dc617fe5e4fd07f
86 N42bd24755c2b41a6a76fbf628cb01b0f schema:name pubmed_id
87 schema:value 17545977
88 rdf:type schema:PropertyValue
89 N6a2b6a3184c84bd29afeca7fe8c379ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Genomics
91 rdf:type schema:DefinedTerm
92 N6a4b8cb2b87148b7a61e880f80561752 schema:volumeNumber 2
93 rdf:type schema:PublicationVolume
94 N7d64608ab2334b4aae06defb97c2b02c schema:issueNumber 6
95 rdf:type schema:PublicationIssue
96 N813e881e3eda48029d749c3f76368576 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name RNA
98 rdf:type schema:DefinedTerm
99 N85c8cad3b4aa40e489969e8e31a3abf1 schema:name dimensions_id
100 schema:value pub.1035033499
101 rdf:type schema:PropertyValue
102 N89d4ef89061d4df6b2d1c8d08cb9bb60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Gene Expression Profiling
104 rdf:type schema:DefinedTerm
105 N9d349d9897e8471b8d0fd38b71b54e10 rdf:first sg:person.07715552224.48
106 rdf:rest rdf:nil
107 Na9ba3364a12c42718686cf9d50f93d2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name DNA Restriction Enzymes
109 rdf:type schema:DefinedTerm
110 Nb294db3d224a474d8ac7b25f18a0c600 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Nucleic Acid Amplification Techniques
112 rdf:type schema:DefinedTerm
113 Nb5322f99bca64508a73eaa6b1e0ec4f8 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nd8881f92f89841259793e60ff0a19c35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Transcription, Genetic
117 rdf:type schema:DefinedTerm
118 Nf990fc71549d47638dc617fe5e4fd07f rdf:first sg:person.01261207632.24
119 rdf:rest N9d349d9897e8471b8d0fd38b71b54e10
120 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biological Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
124 schema:name Genetics
125 rdf:type schema:DefinedTerm
126 sg:journal.1037502 schema:issn 1750-2799
127 1754-2189
128 schema:name Nature Protocols
129 rdf:type schema:Periodical
130 sg:person.01261207632.24 schema:affiliation https://www.grid.ac/institutes/grid.425600.5
131 schema:familyName Peleman
132 schema:givenName Johan D
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261207632.24
134 rdf:type schema:Person
135 sg:person.0667001423.18 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
136 schema:familyName Vuylsteke
137 schema:givenName Marnik
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667001423.18
139 rdf:type schema:Person
140 sg:person.07715552224.48 schema:affiliation https://www.grid.ac/institutes/grid.425600.5
141 schema:familyName van Eijk
142 schema:givenName Michiel JT
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715552224.48
144 rdf:type schema:Person
145 sg:pub.10.1007/s11103-004-0275-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041819721
146 https://doi.org/10.1007/s11103-004-0275-2
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11103-005-0953-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016912979
149 https://doi.org/10.1007/s11103-005-0953-8
150 rdf:type schema:CreativeWork
151 sg:pub.10.1023/a:1007468801806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034940111
152 https://doi.org/10.1023/a:1007468801806
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/76469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028559169
155 https://doi.org/10.1038/76469
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nprot.2007.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050936376
158 https://doi.org/10.1038/nprot.2007.175
159 rdf:type schema:CreativeWork
160 sg:pub.10.1385/mb:30:1:031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002974799
161 https://doi.org/10.1385/mb:30:1:031
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/0471142727.mb25b05s57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035930352
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.fgb.2005.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023591176
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.mce.2005.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041866256
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.mimet.2005.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028625042
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.rvsc.2004.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003626790
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0378-1119(03)00713-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004876272
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0888-7543(03)00179-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040086053
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s1369-5266(00)00149-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049260724
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1046/j.1365-2958.2001.02567.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030266556
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1046/j.1365-313x.1996.9050745.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024275878
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1046/j.1365-313x.2002.01345.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041721770
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1073/pnas.1032967100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023103242
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1073/pnas.2136610100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019144085
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1073/pnas.222561199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020296370
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1089/153623103322246548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059215045
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/bioinformatics/btg090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021625478
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/bioinformatics/btg491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029603050
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/bioinformatics/bti393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007360505
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/jxb/erh030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038120786
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/jxb/eri299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052167717
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/nar/23.21.4407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042685674
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/nar/29.7.1616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020258336
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1094/mpmi-19-0567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060078378
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1105/tpc.12.6.963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015267840
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1111/j.1365-313x.2004.02156.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027909398
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1111/j.1365-313x.2005.02630.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040353157
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1111/j.1574-6968.2006.00482.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012159337
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1126/science.1354393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062477287
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1126/science.270.5235.484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551479
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2144/97222bm03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083050163
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.425600.5 schema:alternateName KeyGene (Netherlands)
224 schema:name Keygene N.V., Agro Business Park 90, NL 6708 PW Wageningen, The Netherlands.
225 rdf:type schema:Organization
226 https://www.grid.ac/institutes/grid.5342.0 schema:alternateName Ghent University
227 schema:name Department of Molecular Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
228 Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...