The nature of self-regulation in photosynthetic light-harvesting antenna View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-04-18

AUTHORS

Jevgenij Chmeliov, Andrius Gelzinis, Egidijus Songaila, Ramūnas Augulis, Christopher D. P. Duffy, Alexander V. Ruban, Leonas Valkunas

ABSTRACT

The photosynthetic apparatus of green plants is well known for its extremely high efficiency that allows them to operate under dim light conditions. On the other hand, intense sunlight may result in overexcitation of the light-harvesting antenna and the formation of reactive compounds capable of ‘burning out’ the whole photosynthetic unit. Non-photochemical quenching is a self-regulatory mechanism utilized by green plants on a molecular level that allows them to safely dissipate the detrimental excess excitation energy as heat. Although it is believed to take place in the plant's major light-harvesting complexes (LHC) II, there is still no consensus regarding its molecular nature. To get more insight into its physical origin, we performed high-resolution time-resolved fluorescence measurements of LHCII trimers and their aggregates across a wide temperature range. Based on simulations of the excitation energy transfer in the LHCII aggregate, we associate the red-emitting state, having fluorescence maximum at ∼700 nm, with the partial mixing of excitonic and chlorophyll–chlorophyll charge transfer states. On the other hand, the quenched state has a totally different nature and is related to the incoherent excitation transfer to the short-lived carotenoid excited states. Our results also show that the required level of photoprotection in vivo can be achieved by a very subtle change in the number of LHCIIs switched to the quenched state. More... »

PAGES

16045

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nplants.2016.45

DOI

http://dx.doi.org/10.1038/nplants.2016.45

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051372358

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27243647


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorescence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light-Harvesting Protein Complexes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Leaves", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spinacia oleracea", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saul\u0117tekio Avenue 3, LT-10222 Vilnius, Lithuania", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Theoretical Physics, Faculty of Physics, Vilnius University, Saul\u0117tekio Avenue 9, LT-10222 Vilnius, Lithuania", 
            "Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saul\u0117tekio Avenue 3, LT-10222 Vilnius, Lithuania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chmeliov", 
        "givenName": "Jevgenij", 
        "id": "sg:person.0734273233.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734273233.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saul\u0117tekio Avenue 3, LT-10222 Vilnius, Lithuania", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Theoretical Physics, Faculty of Physics, Vilnius University, Saul\u0117tekio Avenue 9, LT-10222 Vilnius, Lithuania", 
            "Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saul\u0117tekio Avenue 3, LT-10222 Vilnius, Lithuania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gelzinis", 
        "givenName": "Andrius", 
        "id": "sg:person.01365751552.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365751552.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saul\u0117tekio Avenue 3, LT-10222 Vilnius, Lithuania", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saul\u0117tekio Avenue 3, LT-10222 Vilnius, Lithuania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Songaila", 
        "givenName": "Egidijus", 
        "id": "sg:person.01037055411.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037055411.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saul\u0117tekio Avenue 3, LT-10222 Vilnius, Lithuania", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saul\u0117tekio Avenue 3, LT-10222 Vilnius, Lithuania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Augulis", 
        "givenName": "Ram\u016bnas", 
        "id": "sg:person.0721102645.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721102645.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK", 
          "id": "http://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "The School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duffy", 
        "givenName": "Christopher D. P.", 
        "id": "sg:person.010131321662.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010131321662.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK", 
          "id": "http://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "The School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruban", 
        "givenName": "Alexander V.", 
        "id": "sg:person.01264362514.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264362514.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saul\u0117tekio Avenue 3, LT-10222 Vilnius, Lithuania", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Theoretical Physics, Faculty of Physics, Vilnius University, Saul\u0117tekio Avenue 9, LT-10222 Vilnius, Lithuania", 
            "Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saul\u0117tekio Avenue 3, LT-10222 Vilnius, Lithuania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valkunas", 
        "givenName": "Leonas", 
        "id": "sg:person.0607744264.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607744264.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050377161", 
          "https://doi.org/10.1038/nature06262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025098802", 
          "https://doi.org/10.1038/ncomms5433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-013-9924-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051275015", 
          "https://doi.org/10.1007/s11120-013-9924-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.1555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032945170", 
          "https://doi.org/10.1038/nchembio.1555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007392703", 
          "https://doi.org/10.1038/nature03795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-015-0083-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039274377", 
          "https://doi.org/10.1007/s11120-015-0083-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.1755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014109674", 
          "https://doi.org/10.1038/nchembio.1755"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04-18", 
    "datePublishedReg": "2016-04-18", 
    "description": "The photosynthetic apparatus of green plants is well known for its extremely high efficiency that allows them to operate under dim light conditions. On the other hand, intense sunlight may result in overexcitation of the light-harvesting antenna and the formation of reactive compounds capable of \u2018burning out\u2019 the whole photosynthetic unit. Non-photochemical quenching is a self-regulatory mechanism utilized by green plants on a molecular level that allows them to safely dissipate the detrimental excess excitation energy as heat. Although it is believed to take place in the plant's major light-harvesting complexes (LHC) II, there is still no consensus regarding its molecular nature. To get more insight into its physical origin, we performed high-resolution time-resolved fluorescence measurements of LHCII trimers and their aggregates across a wide temperature range. Based on simulations of the excitation energy transfer in the LHCII aggregate, we associate the red-emitting state, having fluorescence maximum at \u223c700\u2005nm, with the partial mixing of excitonic and chlorophyll\u2013chlorophyll charge transfer states. On the other hand, the quenched state has a totally different nature and is related to the incoherent excitation transfer to the short-lived carotenoid excited states. Our results also show that the required level of photoprotection in vivo can be achieved by a very subtle change in the number of LHCIIs switched to the quenched state.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nplants.2016.45", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2771961", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3862199", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1051401", 
        "issn": [
          "2055-026X", 
          "2055-0278"
        ], 
        "name": "Nature Plants", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "Major Light-Harvesting Complex II", 
      "light-harvesting antenna", 
      "photosynthetic light-harvesting antennae", 
      "charge transfer state", 
      "time-resolved fluorescence measurements", 
      "Light-Harvesting Complex II", 
      "carotenoid excited states", 
      "excitation energy transfer", 
      "transfer state", 
      "LHCII aggregates", 
      "reactive compounds", 
      "LHCII trimers", 
      "fluorescence maximum", 
      "energy transfer", 
      "fluorescence measurements", 
      "excited states", 
      "wide temperature range", 
      "excess excitation energy", 
      "Complex II", 
      "green plants", 
      "red-emitting state", 
      "molecular level", 
      "photosynthetic units", 
      "excitation transfer", 
      "temperature range", 
      "excitation energy", 
      "high efficiency", 
      "different nature", 
      "aggregates", 
      "level of photoprotection", 
      "LHCIIs", 
      "molecular nature", 
      "compounds", 
      "transfer", 
      "trimer", 
      "intense sunlight", 
      "subtle changes", 
      "quenching", 
      "partial mixing", 
      "photosynthetic apparatus", 
      "physical origin", 
      "sunlight", 
      "nature", 
      "formation", 
      "non-photochemical quenching", 
      "state", 
      "more insight", 
      "energy", 
      "efficiency", 
      "range", 
      "photoprotection", 
      "measurements", 
      "light conditions", 
      "units", 
      "mechanism", 
      "mixing", 
      "dim light conditions", 
      "maximum", 
      "plants", 
      "insights", 
      "conditions", 
      "heat", 
      "apparatus", 
      "hand", 
      "simulations", 
      "self-regulatory mechanisms", 
      "origin", 
      "place", 
      "results", 
      "vivo", 
      "changes", 
      "overexcitation", 
      "levels", 
      "number", 
      "antenna", 
      "consensus"
    ], 
    "name": "The nature of self-regulation in photosynthetic light-harvesting antenna", 
    "pagination": "16045", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051372358"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nplants.2016.45"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27243647"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nplants.2016.45", 
      "https://app.dimensions.ai/details/publication/pub.1051372358"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_699.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nplants.2016.45"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nplants.2016.45'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nplants.2016.45'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nplants.2016.45'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nplants.2016.45'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      113 URIs      98 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nplants.2016.45 schema:about N6a789c5a2a154429a6dad269dbd9f8d8
2 N8312b675375f48df814d934d96031591
3 Na91a3d80b01a494ab4e54443bf8d6ada
4 Nc38ed9489aa84d3bbeabe155040ad7af
5 Nfe6bad6283af443eb51673350e0739c5
6 anzsrc-for:06
7 anzsrc-for:0607
8 schema:author N97e499ed7a4740ce950495bb11e7c61d
9 schema:citation sg:pub.10.1007/s11120-013-9924-0
10 sg:pub.10.1007/s11120-015-0083-3
11 sg:pub.10.1038/nature03795
12 sg:pub.10.1038/nature06262
13 sg:pub.10.1038/nchembio.1555
14 sg:pub.10.1038/nchembio.1755
15 sg:pub.10.1038/ncomms5433
16 schema:datePublished 2016-04-18
17 schema:datePublishedReg 2016-04-18
18 schema:description The photosynthetic apparatus of green plants is well known for its extremely high efficiency that allows them to operate under dim light conditions. On the other hand, intense sunlight may result in overexcitation of the light-harvesting antenna and the formation of reactive compounds capable of ‘burning out’ the whole photosynthetic unit. Non-photochemical quenching is a self-regulatory mechanism utilized by green plants on a molecular level that allows them to safely dissipate the detrimental excess excitation energy as heat. Although it is believed to take place in the plant's major light-harvesting complexes (LHC) II, there is still no consensus regarding its molecular nature. To get more insight into its physical origin, we performed high-resolution time-resolved fluorescence measurements of LHCII trimers and their aggregates across a wide temperature range. Based on simulations of the excitation energy transfer in the LHCII aggregate, we associate the red-emitting state, having fluorescence maximum at ∼700 nm, with the partial mixing of excitonic and chlorophyll–chlorophyll charge transfer states. On the other hand, the quenched state has a totally different nature and is related to the incoherent excitation transfer to the short-lived carotenoid excited states. Our results also show that the required level of photoprotection in vivo can be achieved by a very subtle change in the number of LHCIIs switched to the quenched state.
19 schema:genre article
20 schema:isAccessibleForFree true
21 schema:isPartOf Ncfdbd81042bb42c59e579c3456b062f7
22 Nf248b5db74e04b18a82e0fab72269a71
23 sg:journal.1051401
24 schema:keywords Complex II
25 LHCII aggregates
26 LHCII trimers
27 LHCIIs
28 Light-Harvesting Complex II
29 Major Light-Harvesting Complex II
30 aggregates
31 antenna
32 apparatus
33 carotenoid excited states
34 changes
35 charge transfer state
36 compounds
37 conditions
38 consensus
39 different nature
40 dim light conditions
41 efficiency
42 energy
43 energy transfer
44 excess excitation energy
45 excitation energy
46 excitation energy transfer
47 excitation transfer
48 excited states
49 fluorescence maximum
50 fluorescence measurements
51 formation
52 green plants
53 hand
54 heat
55 high efficiency
56 insights
57 intense sunlight
58 level of photoprotection
59 levels
60 light conditions
61 light-harvesting antenna
62 maximum
63 measurements
64 mechanism
65 mixing
66 molecular level
67 molecular nature
68 more insight
69 nature
70 non-photochemical quenching
71 number
72 origin
73 overexcitation
74 partial mixing
75 photoprotection
76 photosynthetic apparatus
77 photosynthetic light-harvesting antennae
78 photosynthetic units
79 physical origin
80 place
81 plants
82 quenching
83 range
84 reactive compounds
85 red-emitting state
86 results
87 self-regulatory mechanisms
88 simulations
89 state
90 subtle changes
91 sunlight
92 temperature range
93 time-resolved fluorescence measurements
94 transfer
95 transfer state
96 trimer
97 units
98 vivo
99 wide temperature range
100 schema:name The nature of self-regulation in photosynthetic light-harvesting antenna
101 schema:pagination 16045
102 schema:productId N10fbe97062a648a5bfabc2065f6b4986
103 N4acb84d39e87419298de88c098a6efb7
104 N94aeae2cc0b548ac9c4e01fdd1df5ad0
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051372358
106 https://doi.org/10.1038/nplants.2016.45
107 schema:sdDatePublished 2022-11-24T21:00
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher Ne51e40aaee0941a5ae51b74c117b5379
110 schema:url https://doi.org/10.1038/nplants.2016.45
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N10fbe97062a648a5bfabc2065f6b4986 schema:name dimensions_id
115 schema:value pub.1051372358
116 rdf:type schema:PropertyValue
117 N110962b41421400a9706e6f055daa8ab rdf:first sg:person.0721102645.70
118 rdf:rest Nb3a2f2e7b2a049a683dd7cf794cfa013
119 N20bba917cb674c02bd26fee1de173cfe rdf:first sg:person.01365751552.28
120 rdf:rest N8c80fe9e33b04f8e912d1145a728ed5c
121 N4acb84d39e87419298de88c098a6efb7 schema:name doi
122 schema:value 10.1038/nplants.2016.45
123 rdf:type schema:PropertyValue
124 N6a789c5a2a154429a6dad269dbd9f8d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Light-Harvesting Protein Complexes
126 rdf:type schema:DefinedTerm
127 N8312b675375f48df814d934d96031591 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Spinacia oleracea
129 rdf:type schema:DefinedTerm
130 N8c80fe9e33b04f8e912d1145a728ed5c rdf:first sg:person.01037055411.17
131 rdf:rest N110962b41421400a9706e6f055daa8ab
132 N94aeae2cc0b548ac9c4e01fdd1df5ad0 schema:name pubmed_id
133 schema:value 27243647
134 rdf:type schema:PropertyValue
135 N97e499ed7a4740ce950495bb11e7c61d rdf:first sg:person.0734273233.29
136 rdf:rest N20bba917cb674c02bd26fee1de173cfe
137 Na91a3d80b01a494ab4e54443bf8d6ada schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Photosynthesis
139 rdf:type schema:DefinedTerm
140 Naccd4895e6e741e4a0db1fbc44d09d26 rdf:first sg:person.01264362514.48
141 rdf:rest Nfba439efb4c44a99b31e9900b95a5e02
142 Nb3a2f2e7b2a049a683dd7cf794cfa013 rdf:first sg:person.010131321662.28
143 rdf:rest Naccd4895e6e741e4a0db1fbc44d09d26
144 Nc38ed9489aa84d3bbeabe155040ad7af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Fluorescence
146 rdf:type schema:DefinedTerm
147 Ncfdbd81042bb42c59e579c3456b062f7 schema:volumeNumber 2
148 rdf:type schema:PublicationVolume
149 Ne51e40aaee0941a5ae51b74c117b5379 schema:name Springer Nature - SN SciGraph project
150 rdf:type schema:Organization
151 Nf248b5db74e04b18a82e0fab72269a71 schema:issueNumber 5
152 rdf:type schema:PublicationIssue
153 Nfba439efb4c44a99b31e9900b95a5e02 rdf:first sg:person.0607744264.36
154 rdf:rest rdf:nil
155 Nfe6bad6283af443eb51673350e0739c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Plant Leaves
157 rdf:type schema:DefinedTerm
158 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
159 schema:name Biological Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
162 schema:name Plant Biology
163 rdf:type schema:DefinedTerm
164 sg:grant.2771961 http://pending.schema.org/fundedItem sg:pub.10.1038/nplants.2016.45
165 rdf:type schema:MonetaryGrant
166 sg:grant.3862199 http://pending.schema.org/fundedItem sg:pub.10.1038/nplants.2016.45
167 rdf:type schema:MonetaryGrant
168 sg:journal.1051401 schema:issn 2055-026X
169 2055-0278
170 schema:name Nature Plants
171 schema:publisher Springer Nature
172 rdf:type schema:Periodical
173 sg:person.010131321662.28 schema:affiliation grid-institutes:grid.4868.2
174 schema:familyName Duffy
175 schema:givenName Christopher D. P.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010131321662.28
177 rdf:type schema:Person
178 sg:person.01037055411.17 schema:affiliation grid-institutes:None
179 schema:familyName Songaila
180 schema:givenName Egidijus
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037055411.17
182 rdf:type schema:Person
183 sg:person.01264362514.48 schema:affiliation grid-institutes:grid.4868.2
184 schema:familyName Ruban
185 schema:givenName Alexander V.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264362514.48
187 rdf:type schema:Person
188 sg:person.01365751552.28 schema:affiliation grid-institutes:None
189 schema:familyName Gelzinis
190 schema:givenName Andrius
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365751552.28
192 rdf:type schema:Person
193 sg:person.0607744264.36 schema:affiliation grid-institutes:None
194 schema:familyName Valkunas
195 schema:givenName Leonas
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607744264.36
197 rdf:type schema:Person
198 sg:person.0721102645.70 schema:affiliation grid-institutes:None
199 schema:familyName Augulis
200 schema:givenName Ramūnas
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721102645.70
202 rdf:type schema:Person
203 sg:person.0734273233.29 schema:affiliation grid-institutes:None
204 schema:familyName Chmeliov
205 schema:givenName Jevgenij
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734273233.29
207 rdf:type schema:Person
208 sg:pub.10.1007/s11120-013-9924-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051275015
209 https://doi.org/10.1007/s11120-013-9924-0
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s11120-015-0083-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039274377
212 https://doi.org/10.1007/s11120-015-0083-3
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nature03795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007392703
215 https://doi.org/10.1038/nature03795
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/nature06262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050377161
218 https://doi.org/10.1038/nature06262
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/nchembio.1555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032945170
221 https://doi.org/10.1038/nchembio.1555
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nchembio.1755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014109674
224 https://doi.org/10.1038/nchembio.1755
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/ncomms5433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025098802
227 https://doi.org/10.1038/ncomms5433
228 rdf:type schema:CreativeWork
229 grid-institutes:None schema:alternateName Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10222 Vilnius, Lithuania
230 schema:name Department of Molecular Compound Physics, Centre for Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10222 Vilnius, Lithuania
231 Department of Theoretical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
232 rdf:type schema:Organization
233 grid-institutes:grid.4868.2 schema:alternateName The School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
234 schema:name The School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...