State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-04-04

AUTHORS

Wojciech J. Nawrocki, Stefano Santabarbara, Laura Mosebach, Francis-André Wollman, Fabrice Rappaport

ABSTRACT

Photosynthesis converts sunlight into biologically useful compounds, thus fuelling practically the entire biosphere. This process involves two photosystems acting in series powered by light harvesting complexes (LHCs) that dramatically increase the energy flux to the reaction centres. These complexes are the main targets of the regulatory processes that allow photosynthetic organisms to thrive across a broad range of light intensities. In microalgae, one mechanism for adjusting the flow of energy to the photosystems, state transitions, has a much larger amplitude than in terrestrial plants, whereas thermal dissipation of energy, the dominant regulatory mechanism in plants, only takes place after acclimation to high light. Here we show that, at variance with recent reports, microalgal state transitions do not dissipate light energy but redistribute it between the two photosystems, thereby allowing a well-balanced influx of excitation energy. More... »

PAGES

16031

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nplants.2016.31

DOI

http://dx.doi.org/10.1038/nplants.2016.31

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047912047

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27249564


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acclimatization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlamydomonas", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microalgae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosystem I Protein Complex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosystem II Protein Complex", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.450875.b", 
          "name": [
            "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nawrocki", 
        "givenName": "Wojciech J.", 
        "id": "sg:person.013543247751.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013543247751.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419463.d", 
          "name": [
            "Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Santabarbara", 
        "givenName": "Stefano", 
        "id": "sg:person.01111234443.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111234443.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u2020Present address: Munster University, Institute of Plant Biology & Biotechnology, D-48143 Muenster, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5949.1", 
          "name": [
            "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie 75005, Paris, France", 
            "\u2020Present address: Munster University, Institute of Plant Biology & Biotechnology, D-48143 Muenster, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mosebach", 
        "givenName": "Laura", 
        "id": "sg:person.014742636307.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014742636307.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.450875.b", 
          "name": [
            "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wollman", 
        "givenName": "Francis-Andr\u00e9", 
        "id": "sg:person.0661464054.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661464054.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.450875.b", 
          "name": [
            "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaport", 
        "givenName": "Fabrice", 
        "id": "sg:person.01103560265.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103560265.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00118289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008838212", 
          "https://doi.org/10.1007/bf00118289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.1555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032945170", 
          "https://doi.org/10.1038/nchembio.1555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036072520", 
          "https://doi.org/10.1038/nature08587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036796951", 
          "https://doi.org/10.1038/ncomms2954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35046121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002551819", 
          "https://doi.org/10.1038/35046121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005818317797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047622290", 
          "https://doi.org/10.1023/a:1005818317797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013731363", 
          "https://doi.org/10.1038/nature13991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00249-015-1087-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004353285", 
          "https://doi.org/10.1007/s00249-015-1087-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04-04", 
    "datePublishedReg": "2016-04-04", 
    "description": "Photosynthesis converts sunlight into biologically useful compounds, thus fuelling practically the entire biosphere. This process involves two photosystems acting in series powered by light harvesting complexes (LHCs) that dramatically increase the energy flux to the reaction centres. These complexes are the main targets of the regulatory processes that allow photosynthetic organisms to thrive across a broad range of light intensities. In microalgae, one mechanism for adjusting the flow of energy to the photosystems, state transitions, has a much larger amplitude than in terrestrial plants, whereas thermal dissipation of energy, the dominant regulatory mechanism in plants, only takes place after acclimation to high light. Here we show that, at variance with recent reports, microalgal state transitions do not dissipate light energy but redistribute it between the two photosystems, thereby allowing a well-balanced influx of excitation energy.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nplants.2016.31", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1051401", 
        "issn": [
          "2055-026X", 
          "2055-0278"
        ], 
        "name": "Nature Plants", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "light-harvesting complex", 
      "photosynthetic organisms", 
      "terrestrial plants", 
      "high light", 
      "harvesting complex", 
      "regulatory mechanisms", 
      "photosystems", 
      "entire biosphere", 
      "dominant regulatory mechanism", 
      "regulatory processes", 
      "flow of energy", 
      "reaction centers", 
      "light energy", 
      "plants", 
      "useful compounds", 
      "light intensity", 
      "Chlamydomonas", 
      "state transitions", 
      "thermal dissipation", 
      "complexes", 
      "acclimation", 
      "organisms", 
      "recent reports", 
      "microalgae", 
      "biosphere", 
      "mechanism", 
      "main target", 
      "broad range", 
      "target", 
      "influx", 
      "process", 
      "transition", 
      "compounds", 
      "light", 
      "sunlight", 
      "energy flux", 
      "flux", 
      "variance", 
      "range", 
      "report", 
      "intensity", 
      "place", 
      "series", 
      "excitation energy", 
      "energy", 
      "flow", 
      "center", 
      "dissipation", 
      "large amplitude", 
      "amplitude", 
      "Photosynthesis converts sunlight", 
      "converts sunlight", 
      "microalgal state transitions", 
      "balanced influx"
    ], 
    "name": "State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas", 
    "pagination": "16031", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047912047"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nplants.2016.31"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27249564"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nplants.2016.31", 
      "https://app.dimensions.ai/details/publication/pub.1047912047"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_686.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nplants.2016.31"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nplants.2016.31'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nplants.2016.31'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nplants.2016.31'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nplants.2016.31'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      22 PREDICATES      95 URIs      79 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nplants.2016.31 schema:about N057f1f7a964840ff801233d0a24a0303
2 N5d988fead5ae4b7abee95a3af4f86605
3 N62c5fe93fc8f4b00a7770107c3dd01a1
4 N62ee8ec0de0a4e319e6c25f04bb06894
5 Na9ea8a4e499143499271ef1476ee6968
6 Ne64f7d366787437f9df293e86ac28883
7 Ne78ddb251d2e44b0b4c65d27c0a9c614
8 anzsrc-for:06
9 anzsrc-for:0607
10 schema:author Nc7fffd1b1e52446f92bfa84f5931337a
11 schema:citation sg:pub.10.1007/bf00118289
12 sg:pub.10.1007/s00249-015-1087-9
13 sg:pub.10.1023/a:1005818317797
14 sg:pub.10.1038/35046121
15 sg:pub.10.1038/nature08587
16 sg:pub.10.1038/nature13991
17 sg:pub.10.1038/nchembio.1555
18 sg:pub.10.1038/ncomms2954
19 schema:datePublished 2016-04-04
20 schema:datePublishedReg 2016-04-04
21 schema:description Photosynthesis converts sunlight into biologically useful compounds, thus fuelling practically the entire biosphere. This process involves two photosystems acting in series powered by light harvesting complexes (LHCs) that dramatically increase the energy flux to the reaction centres. These complexes are the main targets of the regulatory processes that allow photosynthetic organisms to thrive across a broad range of light intensities. In microalgae, one mechanism for adjusting the flow of energy to the photosystems, state transitions, has a much larger amplitude than in terrestrial plants, whereas thermal dissipation of energy, the dominant regulatory mechanism in plants, only takes place after acclimation to high light. Here we show that, at variance with recent reports, microalgal state transitions do not dissipate light energy but redistribute it between the two photosystems, thereby allowing a well-balanced influx of excitation energy.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N1ffa78e5adea4d21841df86580f6ad30
26 N70c1b1f87d104266b43aa54a6c45a01b
27 sg:journal.1051401
28 schema:keywords Chlamydomonas
29 Photosynthesis converts sunlight
30 acclimation
31 amplitude
32 balanced influx
33 biosphere
34 broad range
35 center
36 complexes
37 compounds
38 converts sunlight
39 dissipation
40 dominant regulatory mechanism
41 energy
42 energy flux
43 entire biosphere
44 excitation energy
45 flow
46 flow of energy
47 flux
48 harvesting complex
49 high light
50 influx
51 intensity
52 large amplitude
53 light
54 light energy
55 light intensity
56 light-harvesting complex
57 main target
58 mechanism
59 microalgae
60 microalgal state transitions
61 organisms
62 photosynthetic organisms
63 photosystems
64 place
65 plants
66 process
67 range
68 reaction centers
69 recent reports
70 regulatory mechanisms
71 regulatory processes
72 report
73 series
74 state transitions
75 sunlight
76 target
77 terrestrial plants
78 thermal dissipation
79 transition
80 useful compounds
81 variance
82 schema:name State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas
83 schema:pagination 16031
84 schema:productId N67fa60a778384e00bd79ca5baa5ea687
85 Nb5649f5d9c2a401da179ed67f9df9888
86 Ne5183c87127f4732a5de3180c1702609
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047912047
88 https://doi.org/10.1038/nplants.2016.31
89 schema:sdDatePublished 2022-01-01T18:38
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N58079354dcfe4da581f13f76071979a0
92 schema:url https://doi.org/10.1038/nplants.2016.31
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N057f1f7a964840ff801233d0a24a0303 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Microalgae
98 rdf:type schema:DefinedTerm
99 N1ffa78e5adea4d21841df86580f6ad30 schema:issueNumber 4
100 rdf:type schema:PublicationIssue
101 N270ac215f94c4a4b9f9ccb5abaf610f7 rdf:first sg:person.014742636307.50
102 rdf:rest N69a74ae86b6249b79d7141ce429d01c1
103 N58079354dcfe4da581f13f76071979a0 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N5d988fead5ae4b7abee95a3af4f86605 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Photosynthesis
107 rdf:type schema:DefinedTerm
108 N62c5fe93fc8f4b00a7770107c3dd01a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Acclimatization
110 rdf:type schema:DefinedTerm
111 N62ee8ec0de0a4e319e6c25f04bb06894 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Photosystem I Protein Complex
113 rdf:type schema:DefinedTerm
114 N67fa60a778384e00bd79ca5baa5ea687 schema:name dimensions_id
115 schema:value pub.1047912047
116 rdf:type schema:PropertyValue
117 N69a74ae86b6249b79d7141ce429d01c1 rdf:first sg:person.0661464054.08
118 rdf:rest Ne94fb72f0c314d6d93be2b50a049fbd7
119 N703bd3d594674a0facc5271074d9fe41 rdf:first sg:person.01111234443.75
120 rdf:rest N270ac215f94c4a4b9f9ccb5abaf610f7
121 N70c1b1f87d104266b43aa54a6c45a01b schema:volumeNumber 2
122 rdf:type schema:PublicationVolume
123 Na9ea8a4e499143499271ef1476ee6968 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Photosystem II Protein Complex
125 rdf:type schema:DefinedTerm
126 Nb5649f5d9c2a401da179ed67f9df9888 schema:name pubmed_id
127 schema:value 27249564
128 rdf:type schema:PropertyValue
129 Nc7fffd1b1e52446f92bfa84f5931337a rdf:first sg:person.013543247751.26
130 rdf:rest N703bd3d594674a0facc5271074d9fe41
131 Ne5183c87127f4732a5de3180c1702609 schema:name doi
132 schema:value 10.1038/nplants.2016.31
133 rdf:type schema:PropertyValue
134 Ne64f7d366787437f9df293e86ac28883 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Light
136 rdf:type schema:DefinedTerm
137 Ne78ddb251d2e44b0b4c65d27c0a9c614 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Chlamydomonas
139 rdf:type schema:DefinedTerm
140 Ne94fb72f0c314d6d93be2b50a049fbd7 rdf:first sg:person.01103560265.56
141 rdf:rest rdf:nil
142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
143 schema:name Biological Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
146 schema:name Plant Biology
147 rdf:type schema:DefinedTerm
148 sg:journal.1051401 schema:issn 2055-026X
149 2055-0278
150 schema:name Nature Plants
151 schema:publisher Springer Nature
152 rdf:type schema:Periodical
153 sg:person.01103560265.56 schema:affiliation grid-institutes:grid.450875.b
154 schema:familyName Rappaport
155 schema:givenName Fabrice
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103560265.56
157 rdf:type schema:Person
158 sg:person.01111234443.75 schema:affiliation grid-institutes:grid.419463.d
159 schema:familyName Santabarbara
160 schema:givenName Stefano
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111234443.75
162 rdf:type schema:Person
163 sg:person.013543247751.26 schema:affiliation grid-institutes:grid.450875.b
164 schema:familyName Nawrocki
165 schema:givenName Wojciech J.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013543247751.26
167 rdf:type schema:Person
168 sg:person.014742636307.50 schema:affiliation grid-institutes:grid.5949.1
169 schema:familyName Mosebach
170 schema:givenName Laura
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014742636307.50
172 rdf:type schema:Person
173 sg:person.0661464054.08 schema:affiliation grid-institutes:grid.450875.b
174 schema:familyName Wollman
175 schema:givenName Francis-André
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661464054.08
177 rdf:type schema:Person
178 sg:pub.10.1007/bf00118289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008838212
179 https://doi.org/10.1007/bf00118289
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s00249-015-1087-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004353285
182 https://doi.org/10.1007/s00249-015-1087-9
183 rdf:type schema:CreativeWork
184 sg:pub.10.1023/a:1005818317797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047622290
185 https://doi.org/10.1023/a:1005818317797
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/35046121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002551819
188 https://doi.org/10.1038/35046121
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature08587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036072520
191 https://doi.org/10.1038/nature08587
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nature13991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013731363
194 https://doi.org/10.1038/nature13991
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nchembio.1555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032945170
197 https://doi.org/10.1038/nchembio.1555
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/ncomms2954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036796951
200 https://doi.org/10.1038/ncomms2954
201 rdf:type schema:CreativeWork
202 grid-institutes:grid.419463.d schema:alternateName Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milan, Italy
203 schema:name Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milan, Italy
204 rdf:type schema:Organization
205 grid-institutes:grid.450875.b schema:alternateName Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie 75005, Paris, France
206 schema:name Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie 75005, Paris, France
207 rdf:type schema:Organization
208 grid-institutes:grid.5949.1 schema:alternateName †Present address: Munster University, Institute of Plant Biology & Biotechnology, D-48143 Muenster, Germany
209 schema:name Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie 75005, Paris, France
210 †Present address: Munster University, Institute of Plant Biology & Biotechnology, D-48143 Muenster, Germany
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...