Simulating US agriculture in a modern Dust Bowl drought View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12-12

AUTHORS

Michael Glotter, Joshua Elliott

ABSTRACT

Drought-induced agricultural loss is one of the most costly impacts of extreme weather1–3, and without mitigation, climate change is likely to increase the severity and frequency of future droughts4,5. The Dust Bowl of the 1930s was the driest and hottest for agriculture in modern US history. Improvements in farming practices have increased productivity, but yields today are still tightly linked to climate variation6 and the impacts of a 1930s-type drought on current and future agricultural systems remain unclear. Simulations of biophysical process and empirical models suggest that Dust-Bowl-type droughts today would have unprecedented consequences, with yield losses ∼50% larger than the severe drought of 2012. Damages at these extremes are highly sensitive to temperature, worsening by ∼25% with each degree centigrade of warming. We find that high temperatures can be more damaging than rainfall deficit, and, without adaptation, warmer mid-century temperatures with even average precipitation could lead to maize losses equivalent to the Dust Bowl drought. Warmer temperatures alongside consecutive droughts could make up to 85% of rain-fed maize at risk of changes that may persist for decades. Understanding the interactions of weather extremes and a changing agricultural system is therefore critical to effectively respond to, and minimize, the impacts of the next extreme drought event. More... »

PAGES

16193

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nplants.2016.193

DOI

http://dx.doi.org/10.1038/nplants.2016.193

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022227465

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27941818


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Agriculture", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Climate Change", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Droughts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seasons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Socioeconomic Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soybeans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triticum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Zea mays", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of the Geophysical Sciences, University of Chicago, 5734 S Ellis Avenue, 60637, Chicago, Illinois, USA", 
          "id": "http://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "Department of the Geophysical Sciences, University of Chicago, 5734 S Ellis Avenue, 60637, Chicago, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glotter", 
        "givenName": "Michael", 
        "id": "sg:person.01234550006.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234550006.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computation Institute, University of Chicago, 5735 S Ellis Avenue, 60637, Chicago, Illinois, USA", 
          "id": "http://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, New York, USA", 
            "Computation Institute, University of Chicago, 5735 S Ellis Avenue, 60637, Chicago, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elliott", 
        "givenName": "Joshua", 
        "id": "sg:person.01052206206.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052206206.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-010-0807-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025817787", 
          "https://doi.org/10.1007/s00382-010-0807-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010392333", 
          "https://doi.org/10.1038/ncomms6989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0340-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031386741", 
          "https://doi.org/10.1007/s00382-007-0340-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nplants.2014.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014092870", 
          "https://doi.org/10.1038/nplants.2014.26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature16467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017978279", 
          "https://doi.org/10.1038/nature16467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-012-0428-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002370482", 
          "https://doi.org/10.1007/s10584-012-0428-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11111-013-0190-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051220646", 
          "https://doi.org/10.1007/s11111-013-0190-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01092678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018068003", 
          "https://doi.org/10.1007/bf01092678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-013-0566-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014637390", 
          "https://doi.org/10.1007/s11069-013-0566-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00141665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051195829", 
          "https://doi.org/10.1007/bf00141665"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12-12", 
    "datePublishedReg": "2016-12-12", 
    "description": "Drought-induced agricultural loss is one of the most costly impacts of extreme weather1\u20133, and without mitigation, climate change is likely to increase the severity and frequency of future droughts4,5. The Dust Bowl of the 1930s was the driest and hottest for agriculture in modern US history. Improvements in farming practices have increased productivity, but yields today are still tightly linked to climate variation6 and the impacts of a 1930s-type drought on current and future agricultural systems remain unclear. Simulations of biophysical process and empirical models suggest that Dust-Bowl-type droughts today would have unprecedented consequences, with yield losses \u223c50% larger than the severe drought of 2012. Damages at these extremes are highly sensitive to temperature, worsening by \u223c25% with each degree centigrade of warming. We find that high temperatures can be more damaging than rainfall deficit, and, without adaptation, warmer mid-century temperatures with even average precipitation could lead to maize losses equivalent to the Dust Bowl drought. Warmer temperatures alongside consecutive droughts could make up to 85% of rain-fed maize at risk of changes that may persist for decades. Understanding the interactions of weather extremes and a changing agricultural system is therefore critical to effectively respond to, and minimize, the impacts of the next extreme drought event.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nplants.2016.193", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3108952", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3131562", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3132604", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1051401", 
        "issn": [
          "2055-026X", 
          "2055-0278"
        ], 
        "name": "Nature Plants", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "Dust Bowl drought", 
      "Dust Bowl", 
      "extreme drought events", 
      "rain-fed maize", 
      "agricultural systems", 
      "drought today", 
      "rainfall deficit", 
      "average precipitation", 
      "drought events", 
      "weather extremes", 
      "severe drought", 
      "climate change", 
      "consecutive droughts", 
      "future agricultural systems", 
      "Warmer temperatures", 
      "drought", 
      "biophysical processes", 
      "maize losses", 
      "farming practices", 
      "agricultural losses", 
      "extremes", 
      "US agriculture", 
      "unprecedented consequences", 
      "risk of changes", 
      "costly impact", 
      "empirical model", 
      "agriculture", 
      "driest", 
      "precipitation", 
      "temperature", 
      "yield loss", 
      "impact", 
      "US history", 
      "events", 
      "high temperature", 
      "changes", 
      "productivity", 
      "mitigation", 
      "maize", 
      "loss", 
      "today", 
      "history", 
      "decades", 
      "simulations", 
      "adaptation", 
      "bowl", 
      "consequences", 
      "model", 
      "future", 
      "process", 
      "system", 
      "practice", 
      "risk", 
      "degree", 
      "interaction", 
      "frequency", 
      "damage", 
      "deficits", 
      "improvement", 
      "severity", 
      "modern US history"
    ], 
    "name": "Simulating US agriculture in a modern Dust Bowl drought", 
    "pagination": "16193", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022227465"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nplants.2016.193"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27941818"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nplants.2016.193", 
      "https://app.dimensions.ai/details/publication/pub.1022227465"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_695.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nplants.2016.193"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nplants.2016.193'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nplants.2016.193'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nplants.2016.193'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nplants.2016.193'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      22 PREDICATES      108 URIs      90 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nplants.2016.193 schema:about N1e149e509d114a1f9a25bc8dd3118280
2 N2fb8adee5b0f42fbbef6c8a51f842c7e
3 N63dc7aafac384d9294d2dd7a2438a928
4 N6422beb9e73d442cb92e18587229d477
5 N6d27e26f5af14a7bb124cb796156a31e
6 N8d50f3d41aad40bd94155a8ce316c406
7 N9245fa9af84e42cd8ef30c8ae0521f4d
8 Na784f124206a4edea78d458ac33bbd14
9 Nb058b7d9bc1e40b39932a501af21cd4b
10 Nc4b13080e2fa4ce58f176b78edde6a1e
11 Ne8c6bcc412e24855ac5b1e3e6e4b9871
12 anzsrc-for:06
13 anzsrc-for:0607
14 schema:author Nff583f94a857428b96c636ad355b34d8
15 schema:citation sg:pub.10.1007/bf00141665
16 sg:pub.10.1007/bf01092678
17 sg:pub.10.1007/s00382-007-0340-z
18 sg:pub.10.1007/s00382-010-0807-1
19 sg:pub.10.1007/s10584-012-0428-2
20 sg:pub.10.1007/s11069-013-0566-5
21 sg:pub.10.1007/s11111-013-0190-z
22 sg:pub.10.1038/nature16467
23 sg:pub.10.1038/ncomms6989
24 sg:pub.10.1038/nplants.2014.26
25 schema:datePublished 2016-12-12
26 schema:datePublishedReg 2016-12-12
27 schema:description Drought-induced agricultural loss is one of the most costly impacts of extreme weather1–3, and without mitigation, climate change is likely to increase the severity and frequency of future droughts4,5. The Dust Bowl of the 1930s was the driest and hottest for agriculture in modern US history. Improvements in farming practices have increased productivity, but yields today are still tightly linked to climate variation6 and the impacts of a 1930s-type drought on current and future agricultural systems remain unclear. Simulations of biophysical process and empirical models suggest that Dust-Bowl-type droughts today would have unprecedented consequences, with yield losses ∼50% larger than the severe drought of 2012. Damages at these extremes are highly sensitive to temperature, worsening by ∼25% with each degree centigrade of warming. We find that high temperatures can be more damaging than rainfall deficit, and, without adaptation, warmer mid-century temperatures with even average precipitation could lead to maize losses equivalent to the Dust Bowl drought. Warmer temperatures alongside consecutive droughts could make up to 85% of rain-fed maize at risk of changes that may persist for decades. Understanding the interactions of weather extremes and a changing agricultural system is therefore critical to effectively respond to, and minimize, the impacts of the next extreme drought event.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N47fc9c11cd284f5c9c771c57fe7ed686
32 N88b685516029475e98122b3623a1fa63
33 sg:journal.1051401
34 schema:keywords Dust Bowl
35 Dust Bowl drought
36 US agriculture
37 US history
38 Warmer temperatures
39 adaptation
40 agricultural losses
41 agricultural systems
42 agriculture
43 average precipitation
44 biophysical processes
45 bowl
46 changes
47 climate change
48 consecutive droughts
49 consequences
50 costly impact
51 damage
52 decades
53 deficits
54 degree
55 driest
56 drought
57 drought events
58 drought today
59 empirical model
60 events
61 extreme drought events
62 extremes
63 farming practices
64 frequency
65 future
66 future agricultural systems
67 high temperature
68 history
69 impact
70 improvement
71 interaction
72 loss
73 maize
74 maize losses
75 mitigation
76 model
77 modern US history
78 practice
79 precipitation
80 process
81 productivity
82 rain-fed maize
83 rainfall deficit
84 risk
85 risk of changes
86 severe drought
87 severity
88 simulations
89 system
90 temperature
91 today
92 unprecedented consequences
93 weather extremes
94 yield loss
95 schema:name Simulating US agriculture in a modern Dust Bowl drought
96 schema:pagination 16193
97 schema:productId Nc98dcebcdd2f4e66be89870285a446c5
98 Nd52f5fc8ff1c476ba2d55001ba33f9ee
99 Nf9a6bcbdc7b24333b258fdc7cb921edb
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022227465
101 https://doi.org/10.1038/nplants.2016.193
102 schema:sdDatePublished 2022-06-01T22:15
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher Nfd2dcc4e8ab24bfaba1573b9c3e08638
105 schema:url https://doi.org/10.1038/nplants.2016.193
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N1e149e509d114a1f9a25bc8dd3118280 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name United States
111 rdf:type schema:DefinedTerm
112 N2fb8adee5b0f42fbbef6c8a51f842c7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Models, Theoretical
114 rdf:type schema:DefinedTerm
115 N47fc9c11cd284f5c9c771c57fe7ed686 schema:volumeNumber 3
116 rdf:type schema:PublicationVolume
117 N63dc7aafac384d9294d2dd7a2438a928 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Socioeconomic Factors
119 rdf:type schema:DefinedTerm
120 N6422beb9e73d442cb92e18587229d477 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Agriculture
122 rdf:type schema:DefinedTerm
123 N6d27e26f5af14a7bb124cb796156a31e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Triticum
125 rdf:type schema:DefinedTerm
126 N88b685516029475e98122b3623a1fa63 schema:issueNumber 1
127 rdf:type schema:PublicationIssue
128 N8d50f3d41aad40bd94155a8ce316c406 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Soybeans
130 rdf:type schema:DefinedTerm
131 N9245fa9af84e42cd8ef30c8ae0521f4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Seasons
133 rdf:type schema:DefinedTerm
134 Na784f124206a4edea78d458ac33bbd14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Computer Simulation
136 rdf:type schema:DefinedTerm
137 Nb058b7d9bc1e40b39932a501af21cd4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Climate Change
139 rdf:type schema:DefinedTerm
140 Nc4b13080e2fa4ce58f176b78edde6a1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Zea mays
142 rdf:type schema:DefinedTerm
143 Nc98dcebcdd2f4e66be89870285a446c5 schema:name dimensions_id
144 schema:value pub.1022227465
145 rdf:type schema:PropertyValue
146 Nd52f5fc8ff1c476ba2d55001ba33f9ee schema:name pubmed_id
147 schema:value 27941818
148 rdf:type schema:PropertyValue
149 Ne8c6bcc412e24855ac5b1e3e6e4b9871 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Droughts
151 rdf:type schema:DefinedTerm
152 Nf79a37922b98497485360b3242b8e997 rdf:first sg:person.01052206206.60
153 rdf:rest rdf:nil
154 Nf9a6bcbdc7b24333b258fdc7cb921edb schema:name doi
155 schema:value 10.1038/nplants.2016.193
156 rdf:type schema:PropertyValue
157 Nfd2dcc4e8ab24bfaba1573b9c3e08638 schema:name Springer Nature - SN SciGraph project
158 rdf:type schema:Organization
159 Nff583f94a857428b96c636ad355b34d8 rdf:first sg:person.01234550006.10
160 rdf:rest Nf79a37922b98497485360b3242b8e997
161 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
162 schema:name Biological Sciences
163 rdf:type schema:DefinedTerm
164 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
165 schema:name Plant Biology
166 rdf:type schema:DefinedTerm
167 sg:grant.3108952 http://pending.schema.org/fundedItem sg:pub.10.1038/nplants.2016.193
168 rdf:type schema:MonetaryGrant
169 sg:grant.3131562 http://pending.schema.org/fundedItem sg:pub.10.1038/nplants.2016.193
170 rdf:type schema:MonetaryGrant
171 sg:grant.3132604 http://pending.schema.org/fundedItem sg:pub.10.1038/nplants.2016.193
172 rdf:type schema:MonetaryGrant
173 sg:journal.1051401 schema:issn 2055-026X
174 2055-0278
175 schema:name Nature Plants
176 schema:publisher Springer Nature
177 rdf:type schema:Periodical
178 sg:person.01052206206.60 schema:affiliation grid-institutes:grid.170205.1
179 schema:familyName Elliott
180 schema:givenName Joshua
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052206206.60
182 rdf:type schema:Person
183 sg:person.01234550006.10 schema:affiliation grid-institutes:grid.170205.1
184 schema:familyName Glotter
185 schema:givenName Michael
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234550006.10
187 rdf:type schema:Person
188 sg:pub.10.1007/bf00141665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051195829
189 https://doi.org/10.1007/bf00141665
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/bf01092678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018068003
192 https://doi.org/10.1007/bf01092678
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/s00382-007-0340-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031386741
195 https://doi.org/10.1007/s00382-007-0340-z
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/s00382-010-0807-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025817787
198 https://doi.org/10.1007/s00382-010-0807-1
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/s10584-012-0428-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002370482
201 https://doi.org/10.1007/s10584-012-0428-2
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/s11069-013-0566-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014637390
204 https://doi.org/10.1007/s11069-013-0566-5
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s11111-013-0190-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1051220646
207 https://doi.org/10.1007/s11111-013-0190-z
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nature16467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017978279
210 https://doi.org/10.1038/nature16467
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/ncomms6989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010392333
213 https://doi.org/10.1038/ncomms6989
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nplants.2014.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014092870
216 https://doi.org/10.1038/nplants.2014.26
217 rdf:type schema:CreativeWork
218 grid-institutes:grid.170205.1 schema:alternateName Computation Institute, University of Chicago, 5735 S Ellis Avenue, 60637, Chicago, Illinois, USA
219 Department of the Geophysical Sciences, University of Chicago, 5734 S Ellis Avenue, 60637, Chicago, Illinois, USA
220 schema:name Computation Institute, University of Chicago, 5735 S Ellis Avenue, 60637, Chicago, Illinois, USA
221 Department of the Geophysical Sciences, University of Chicago, 5734 S Ellis Avenue, 60637, Chicago, Illinois, USA
222 NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, New York, USA
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...