Quasiparticle approach to diffusional atomic scale self-assembly of complex structures: from disorder to complex crystals and double-helix polymers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-11

AUTHORS

Mykola Lavrskyi, Helena Zapolsky, Armen G Khachaturyan

ABSTRACT

A self-organisation is an universal phenomenon in nature and, in particular, is highly important in materials systems. Our goal was to develop a new theory that provides a computationally effective approach to this problem. In this paper a quasiparticle theory of a diffusional self-organisation of atoms in continuum space during the diffusional time scale has been introduced. This became possible due to two novelties, a concept of quasiparticles, fratons, used for a description of dynamic degrees of freedom and model Hamiltonian taking into account a directionality, length and strength of interatomic bonds. To illustrate a predictive power and achievable level of complexity of self-assembled structures, the challenging cases of self-assembling of the diamond, zinc-blende, helix and double-helix structures, from a random atomic distribution, have been successfully modelled. This approach opens a way to model a self-assembling of complex atomic and molecular structures in the atomic scale during diffusional time. More... »

PAGES

15013

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/npjcompumats.2015.13

DOI

http://dx.doi.org/10.1038/npjcompumats.2015.13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040227217


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Groupe de Physique des Mat\u00e9riaux", 
          "id": "https://www.grid.ac/institutes/grid.464188.7", 
          "name": [
            "GPM, UMR 6634, University of Rouen, Saint-Etienne du Rouvray, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lavrskyi", 
        "givenName": "Mykola", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Groupe de Physique des Mat\u00e9riaux", 
          "id": "https://www.grid.ac/institutes/grid.464188.7", 
          "name": [
            "GPM, UMR 6634, University of Rouen, Saint-Etienne du Rouvray, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zapolsky", 
        "givenName": "Helena", 
        "id": "sg:person.014205532215.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014205532215.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Materials Science & Engineering, Rutgers University, Piscataway, NJ, USA", 
            "Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khachaturyan", 
        "givenName": "Armen G", 
        "id": "sg:person.07524335205.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07524335205.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/cr970102g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002271454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr970102g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002271454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(99)00049-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006065686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/354056a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016485857", 
          "https://doi.org/10.1038/354056a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10820-006-9042-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020289703", 
          "https://doi.org/10.1007/s10820-006-9042-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-4655(97)00115-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025599896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2007.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026727233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1157834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026891877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033919453", 
          "https://doi.org/10.1038/nature01406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033919453", 
          "https://doi.org/10.1038/nature01406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/171737a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040343773", 
          "https://doi.org/10.1038/171737a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6425(78)90003-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041942025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6425(78)90003-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041942025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2005.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051057854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1699114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057769646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.5169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.5169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.r5893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060590630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.r5893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060590630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5992.743625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061195290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/3527602054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511816581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098742549"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11", 
    "datePublishedReg": "2016-11-01", 
    "description": "A self-organisation is an universal phenomenon in nature and, in particular, is highly important in materials systems. Our goal was to develop a new theory that provides a computationally effective approach to this problem. In this paper a quasiparticle theory of a diffusional self-organisation of atoms in continuum space during the diffusional time scale has been introduced. This became possible due to two novelties, a concept of quasiparticles, fratons, used for a description of dynamic degrees of freedom and model Hamiltonian taking into account a directionality, length and strength of interatomic bonds. To illustrate a predictive power and achievable level of complexity of self-assembled structures, the challenging cases of self-assembling of the diamond, zinc-blende, helix and double-helix structures, from a random atomic distribution, have been successfully modelled. This approach opens a way to model a self-assembling of complex atomic and molecular structures in the atomic scale during diffusional time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/npjcompumats.2015.13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1285194", 
        "issn": [
          "2057-3960"
        ], 
        "name": "npj Computational Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Quasiparticle approach to diffusional atomic scale self-assembly of complex structures: from disorder to complex crystals and double-helix polymers", 
    "pagination": "15013", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bfa0a71d0fc0642bab8e1d8b8003eeef0a4d095cb68d1209f2a1d3f59b259475"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/npjcompumats.2015.13"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040227217"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/npjcompumats.2015.13", 
      "https://app.dimensions.ai/details/publication/pub.1040227217"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/npjcompumats201513"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/npjcompumats.2015.13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/npjcompumats.2015.13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/npjcompumats.2015.13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/npjcompumats.2015.13'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/npjcompumats.2015.13 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N1a22027e7e51447a9fb349cd40bb376b
4 schema:citation sg:pub.10.1007/s10820-006-9042-9
5 sg:pub.10.1038/171737a0
6 sg:pub.10.1038/354056a0
7 sg:pub.10.1038/nature01406
8 https://doi.org/10.1002/3527602054
9 https://doi.org/10.1016/0079-6425(78)90003-8
10 https://doi.org/10.1016/j.pmatsci.2007.05.002
11 https://doi.org/10.1016/j.sbi.2005.02.005
12 https://doi.org/10.1016/s0010-4655(97)00115-x
13 https://doi.org/10.1016/s0370-1573(99)00049-6
14 https://doi.org/10.1017/cbo9780511816581
15 https://doi.org/10.1021/cr970102g
16 https://doi.org/10.1063/1.1699114
17 https://doi.org/10.1103/physrevb.27.5169
18 https://doi.org/10.1103/physrevb.58.r5893
19 https://doi.org/10.1109/5992.743625
20 https://doi.org/10.1126/science.1157834
21 schema:datePublished 2016-11
22 schema:datePublishedReg 2016-11-01
23 schema:description A self-organisation is an universal phenomenon in nature and, in particular, is highly important in materials systems. Our goal was to develop a new theory that provides a computationally effective approach to this problem. In this paper a quasiparticle theory of a diffusional self-organisation of atoms in continuum space during the diffusional time scale has been introduced. This became possible due to two novelties, a concept of quasiparticles, fratons, used for a description of dynamic degrees of freedom and model Hamiltonian taking into account a directionality, length and strength of interatomic bonds. To illustrate a predictive power and achievable level of complexity of self-assembled structures, the challenging cases of self-assembling of the diamond, zinc-blende, helix and double-helix structures, from a random atomic distribution, have been successfully modelled. This approach opens a way to model a self-assembling of complex atomic and molecular structures in the atomic scale during diffusional time.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N2c6303792d9e400c95e8b105661641ea
28 N72d250368a064ef294c3c034fc3def64
29 sg:journal.1285194
30 schema:name Quasiparticle approach to diffusional atomic scale self-assembly of complex structures: from disorder to complex crystals and double-helix polymers
31 schema:pagination 15013
32 schema:productId N833f9dd0cc804e56871d6a706b020010
33 N84119bbc3f8b47cd9082b433c6c6f5ff
34 N8fa2ab65b49440f6b1f0ff6df6bcd613
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040227217
36 https://doi.org/10.1038/npjcompumats.2015.13
37 schema:sdDatePublished 2019-04-10T22:19
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Ncc26b763466e4798aad3081cca425c96
40 schema:url http://www.nature.com/articles/npjcompumats201513
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N1a22027e7e51447a9fb349cd40bb376b rdf:first N2089bca3d96b49469fcf2c0fce14c183
45 rdf:rest Nddf703e899ad4ce6b8e0fc21dda69e41
46 N2089bca3d96b49469fcf2c0fce14c183 schema:affiliation https://www.grid.ac/institutes/grid.464188.7
47 schema:familyName Lavrskyi
48 schema:givenName Mykola
49 rdf:type schema:Person
50 N2c6303792d9e400c95e8b105661641ea schema:volumeNumber 2
51 rdf:type schema:PublicationVolume
52 N70c30e8ae65742108ea103e8ea1f0ce5 rdf:first sg:person.07524335205.13
53 rdf:rest rdf:nil
54 N72d250368a064ef294c3c034fc3def64 schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 N833f9dd0cc804e56871d6a706b020010 schema:name readcube_id
57 schema:value bfa0a71d0fc0642bab8e1d8b8003eeef0a4d095cb68d1209f2a1d3f59b259475
58 rdf:type schema:PropertyValue
59 N84119bbc3f8b47cd9082b433c6c6f5ff schema:name dimensions_id
60 schema:value pub.1040227217
61 rdf:type schema:PropertyValue
62 N8fa2ab65b49440f6b1f0ff6df6bcd613 schema:name doi
63 schema:value 10.1038/npjcompumats.2015.13
64 rdf:type schema:PropertyValue
65 Ncc26b763466e4798aad3081cca425c96 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Nddf703e899ad4ce6b8e0fc21dda69e41 rdf:first sg:person.014205532215.00
68 rdf:rest N70c30e8ae65742108ea103e8ea1f0ce5
69 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
70 schema:name Physical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
73 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
74 rdf:type schema:DefinedTerm
75 sg:journal.1285194 schema:issn 2057-3960
76 schema:name npj Computational Materials
77 rdf:type schema:Periodical
78 sg:person.014205532215.00 schema:affiliation https://www.grid.ac/institutes/grid.464188.7
79 schema:familyName Zapolsky
80 schema:givenName Helena
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014205532215.00
82 rdf:type schema:Person
83 sg:person.07524335205.13 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
84 schema:familyName Khachaturyan
85 schema:givenName Armen G
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07524335205.13
87 rdf:type schema:Person
88 sg:pub.10.1007/s10820-006-9042-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020289703
89 https://doi.org/10.1007/s10820-006-9042-9
90 rdf:type schema:CreativeWork
91 sg:pub.10.1038/171737a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040343773
92 https://doi.org/10.1038/171737a0
93 rdf:type schema:CreativeWork
94 sg:pub.10.1038/354056a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016485857
95 https://doi.org/10.1038/354056a0
96 rdf:type schema:CreativeWork
97 sg:pub.10.1038/nature01406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033919453
98 https://doi.org/10.1038/nature01406
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/3527602054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661515
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0079-6425(78)90003-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041942025
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.pmatsci.2007.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026727233
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.sbi.2005.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051057854
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0010-4655(97)00115-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025599896
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0370-1573(99)00049-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006065686
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1017/cbo9780511816581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098742549
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1021/cr970102g schema:sameAs https://app.dimensions.ai/details/publication/pub.1002271454
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1063/1.1699114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769646
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevb.27.5169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060532444
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevb.58.r5893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060590630
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/5992.743625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061195290
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1126/science.1157834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026891877
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.464188.7 schema:alternateName Groupe de Physique des Matériaux
127 schema:name GPM, UMR 6634, University of Rouen, Saint-Etienne du Rouvray, France
128 rdf:type schema:Organization
129 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
130 schema:name Department of Materials Science & Engineering, Rutgers University, Piscataway, NJ, USA
131 Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA, USA
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...