Coherent dynamics of plasma mirrors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-08

AUTHORS

C. Thaury, H. George, F. Quéré, R. Loch, J.-P. Geindre, P. Monot, Ph. Martin

ABSTRACT

Coherent ultrashort X-ray pulses provide new ways to probe matter and its ultrafast dynamics1,2,3. One of the promising paths to generate these pulses consists of using a nonlinear interaction with a system to strongly and periodically distort the waveform of intense laser fields, and thus produce high-order harmonics. Such distortions have so far been induced by using the nonlinear polarizability of atoms, leading to the production of attosecond light bursts4, short enough to study the dynamics of electrons in matter3. Shorter and more intense attosecond pulses, together with higher harmonic orders, are expected5,6 by reflecting ultraintense laser pulses on a plasma mirror—a dense (≈1023 electrons cm−3) plasma with a steep interface. However, short-wavelength-light sources produced by such plasmas are known to generally be incoherent7. In contrast, we demonstrate that like in usual low-intensity reflection, the coherence of the light wave is preserved during harmonic generation on plasma mirrors. We then exploit this coherence for interferometric measurements and thus carry out a first study of the laser-driven coherent dynamics of the plasma electrons. More... »

PAGES

631

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys986

DOI

http://dx.doi.org/10.1038/nphys986

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033628639


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CEA Saclay", 
          "id": "https://www.grid.ac/institutes/grid.457334.2", 
          "name": [
            "CEA, IRAMIS, Service des Photons Atomes et Mol\u00e9cules, F-91191 Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thaury", 
        "givenName": "C.", 
        "id": "sg:person.010771567762.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010771567762.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA Saclay", 
          "id": "https://www.grid.ac/institutes/grid.457334.2", 
          "name": [
            "CEA, IRAMIS, Service des Photons Atomes et Mol\u00e9cules, F-91191 Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "George", 
        "givenName": "H.", 
        "id": "sg:person.07527213272.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07527213272.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA Saclay", 
          "id": "https://www.grid.ac/institutes/grid.457334.2", 
          "name": [
            "CEA, IRAMIS, Service des Photons Atomes et Mol\u00e9cules, F-91191 Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qu\u00e9r\u00e9", 
        "givenName": "F.", 
        "id": "sg:person.01255213273.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255213273.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Twente", 
          "id": "https://www.grid.ac/institutes/grid.6214.1", 
          "name": [
            "Laser Physics and Nonlinear Optics Group, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Loch", 
        "givenName": "R.", 
        "id": "sg:person.0621103734.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621103734.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire pour l'Utilisation des Lasers Intenses", 
          "id": "https://www.grid.ac/institutes/grid.463726.2", 
          "name": [
            "Laboratoire pour l\u2019Utilisation des Lasers Intenses, CNRS, Ecole Polytechnique, 91 128 Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geindre", 
        "givenName": "J.-P.", 
        "id": "sg:person.010373673274.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010373673274.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA Saclay", 
          "id": "https://www.grid.ac/institutes/grid.457334.2", 
          "name": [
            "CEA, IRAMIS, Service des Photons Atomes et Mol\u00e9cules, F-91191 Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monot", 
        "givenName": "P.", 
        "id": "sg:person.01117131136.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117131136.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA Saclay", 
          "id": "https://www.grid.ac/institutes/grid.457334.2", 
          "name": [
            "CEA, IRAMIS, Service des Photons Atomes et Mol\u00e9cules, F-91191 Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martin", 
        "givenName": "Ph.", 
        "id": "sg:person.01036317137.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036317137.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.870766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006245358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011759551", 
          "https://doi.org/10.1038/nphys620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01081318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014533666", 
          "https://doi.org/10.1007/bf01081318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01081318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014533666", 
          "https://doi.org/10.1007/bf01081318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016009275", 
          "https://doi.org/10.1038/nature06229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018536844", 
          "https://doi.org/10.1038/nphys338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018536844", 
          "https://doi.org/10.1038/nphys338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/67/6/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021754980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/8/1/019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025107531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/8/1/019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025107531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.115002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027186295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.115002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027186295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037339175", 
          "https://doi.org/10.1038/nphys595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037339175", 
          "https://doi.org/10.1038/nphys595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.871619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039419295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041009887", 
          "https://doi.org/10.1038/nphys461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041009887", 
          "https://doi.org/10.1038/nphys461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/37317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043671387", 
          "https://doi.org/10.1038/37317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/37317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043671387", 
          "https://doi.org/10.1038/37317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047198038", 
          "https://doi.org/10.1038/nature06049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0263034600003384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053758225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0029-5515/26/5/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058984050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.4747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.4747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.1597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.1597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.61.043802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.61.043802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.095004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.095004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.1006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.1006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.133002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.133002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.125004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.125004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.023901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.023901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.085001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.085001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.2.000027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065215539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.32.000310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224588"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-08", 
    "datePublishedReg": "2008-08-01", 
    "description": "Coherent ultrashort X-ray pulses provide new ways to probe matter and its ultrafast dynamics1,2,3. One of the promising paths to generate these pulses consists of using a nonlinear interaction with a system to strongly and periodically distort the waveform of intense laser fields, and thus produce high-order harmonics. Such distortions have so far been induced by using the nonlinear polarizability of atoms, leading to the production of attosecond light bursts4, short enough to study the dynamics of electrons in matter3. Shorter and more intense attosecond pulses, together with higher harmonic orders, are expected5,6 by reflecting ultraintense laser pulses on a plasma mirror\u2014a dense (\u22481023 electrons cm\u22123) plasma with a steep interface. However, short-wavelength-light sources produced by such plasmas are known to generally be incoherent7. In contrast, we demonstrate that like in usual low-intensity reflection, the coherence of the light wave is preserved during harmonic generation on plasma mirrors. We then exploit this coherence for interferometric measurements and thus carry out a first study of the laser-driven coherent dynamics of the plasma electrons.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys986", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Coherent dynamics of plasma mirrors", 
    "pagination": "631", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a031e68f3dfb93889c9fd209d10cecb53e44b8394f7a6797665c9944a20d6ad6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys986"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033628639"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys986", 
      "https://app.dimensions.ai/details/publication/pub.1033628639"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000589.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys986"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys986'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys986'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys986'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys986'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys986 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N958a748b426647779886d157c8fa66ca
4 schema:citation sg:pub.10.1007/bf01081318
5 sg:pub.10.1038/37317
6 sg:pub.10.1038/nature06049
7 sg:pub.10.1038/nature06229
8 sg:pub.10.1038/nphys338
9 sg:pub.10.1038/nphys461
10 sg:pub.10.1038/nphys595
11 sg:pub.10.1038/nphys620
12 https://doi.org/10.1017/s0263034600003384
13 https://doi.org/10.1063/1.870766
14 https://doi.org/10.1063/1.871619
15 https://doi.org/10.1088/0029-5515/26/5/008
16 https://doi.org/10.1088/0034-4885/67/6/r01
17 https://doi.org/10.1088/1367-2630/8/1/019
18 https://doi.org/10.1103/physreva.52.4747
19 https://doi.org/10.1103/physreva.54.1597
20 https://doi.org/10.1103/physreva.61.043802
21 https://doi.org/10.1103/physrevlett.100.095004
22 https://doi.org/10.1103/physrevlett.59.52
23 https://doi.org/10.1103/physrevlett.79.1006
24 https://doi.org/10.1103/physrevlett.83.5483
25 https://doi.org/10.1103/physrevlett.89.133002
26 https://doi.org/10.1103/physrevlett.93.115002
27 https://doi.org/10.1103/physrevlett.96.125004
28 https://doi.org/10.1103/physrevlett.97.023901
29 https://doi.org/10.1103/physrevlett.99.085001
30 https://doi.org/10.1364/ol.2.000027
31 https://doi.org/10.1364/ol.32.000310
32 schema:datePublished 2008-08
33 schema:datePublishedReg 2008-08-01
34 schema:description Coherent ultrashort X-ray pulses provide new ways to probe matter and its ultrafast dynamics1,2,3. One of the promising paths to generate these pulses consists of using a nonlinear interaction with a system to strongly and periodically distort the waveform of intense laser fields, and thus produce high-order harmonics. Such distortions have so far been induced by using the nonlinear polarizability of atoms, leading to the production of attosecond light bursts4, short enough to study the dynamics of electrons in matter3. Shorter and more intense attosecond pulses, together with higher harmonic orders, are expected5,6 by reflecting ultraintense laser pulses on a plasma mirror—a dense (≈1023 electrons cm−3) plasma with a steep interface. However, short-wavelength-light sources produced by such plasmas are known to generally be incoherent7. In contrast, we demonstrate that like in usual low-intensity reflection, the coherence of the light wave is preserved during harmonic generation on plasma mirrors. We then exploit this coherence for interferometric measurements and thus carry out a first study of the laser-driven coherent dynamics of the plasma electrons.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N349cb1a64e124524afb58a62612e3b4a
39 Nfe49ac07242147df9a0cd1bf876b3a75
40 sg:journal.1034717
41 schema:name Coherent dynamics of plasma mirrors
42 schema:pagination 631
43 schema:productId N61b1f8c4f10d46bd86e894d7bc6c78d0
44 N8a46e48cb47140708ea7e54096b4e0c9
45 Ncee9364d27494575886415929cffecac
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033628639
47 https://doi.org/10.1038/nphys986
48 schema:sdDatePublished 2019-04-10T18:31
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N7c34b62919774522829d45d676589e97
51 schema:url https://www.nature.com/articles/nphys986
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N060e465787c84e3ab5aa1c810d171244 rdf:first sg:person.07527213272.26
56 rdf:rest N634796abe3a6443aae8eeb93da2888eb
57 N349cb1a64e124524afb58a62612e3b4a schema:issueNumber 8
58 rdf:type schema:PublicationIssue
59 N4a0193a68d1f4cb59f1ce20e6b040c28 rdf:first sg:person.01117131136.77
60 rdf:rest N68a942bc46ad4e99ab88392b11a57510
61 N61b1f8c4f10d46bd86e894d7bc6c78d0 schema:name readcube_id
62 schema:value a031e68f3dfb93889c9fd209d10cecb53e44b8394f7a6797665c9944a20d6ad6
63 rdf:type schema:PropertyValue
64 N634796abe3a6443aae8eeb93da2888eb rdf:first sg:person.01255213273.47
65 rdf:rest Neb7d2908ef0649d6bc5649e0a458af97
66 N68a942bc46ad4e99ab88392b11a57510 rdf:first sg:person.01036317137.43
67 rdf:rest rdf:nil
68 N7c34b62919774522829d45d676589e97 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N8a46e48cb47140708ea7e54096b4e0c9 schema:name dimensions_id
71 schema:value pub.1033628639
72 rdf:type schema:PropertyValue
73 N958a748b426647779886d157c8fa66ca rdf:first sg:person.010771567762.32
74 rdf:rest N060e465787c84e3ab5aa1c810d171244
75 Nbc1e2f6148954a6da0b00b30b9c04265 rdf:first sg:person.010373673274.49
76 rdf:rest N4a0193a68d1f4cb59f1ce20e6b040c28
77 Ncee9364d27494575886415929cffecac schema:name doi
78 schema:value 10.1038/nphys986
79 rdf:type schema:PropertyValue
80 Neb7d2908ef0649d6bc5649e0a458af97 rdf:first sg:person.0621103734.29
81 rdf:rest Nbc1e2f6148954a6da0b00b30b9c04265
82 Nfe49ac07242147df9a0cd1bf876b3a75 schema:volumeNumber 4
83 rdf:type schema:PublicationVolume
84 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
85 schema:name Physical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
88 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
89 rdf:type schema:DefinedTerm
90 sg:journal.1034717 schema:issn 1745-2473
91 1745-2481
92 schema:name Nature Physics
93 rdf:type schema:Periodical
94 sg:person.01036317137.43 schema:affiliation https://www.grid.ac/institutes/grid.457334.2
95 schema:familyName Martin
96 schema:givenName Ph.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036317137.43
98 rdf:type schema:Person
99 sg:person.010373673274.49 schema:affiliation https://www.grid.ac/institutes/grid.463726.2
100 schema:familyName Geindre
101 schema:givenName J.-P.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010373673274.49
103 rdf:type schema:Person
104 sg:person.010771567762.32 schema:affiliation https://www.grid.ac/institutes/grid.457334.2
105 schema:familyName Thaury
106 schema:givenName C.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010771567762.32
108 rdf:type schema:Person
109 sg:person.01117131136.77 schema:affiliation https://www.grid.ac/institutes/grid.457334.2
110 schema:familyName Monot
111 schema:givenName P.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117131136.77
113 rdf:type schema:Person
114 sg:person.01255213273.47 schema:affiliation https://www.grid.ac/institutes/grid.457334.2
115 schema:familyName Quéré
116 schema:givenName F.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255213273.47
118 rdf:type schema:Person
119 sg:person.0621103734.29 schema:affiliation https://www.grid.ac/institutes/grid.6214.1
120 schema:familyName Loch
121 schema:givenName R.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621103734.29
123 rdf:type schema:Person
124 sg:person.07527213272.26 schema:affiliation https://www.grid.ac/institutes/grid.457334.2
125 schema:familyName George
126 schema:givenName H.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07527213272.26
128 rdf:type schema:Person
129 sg:pub.10.1007/bf01081318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014533666
130 https://doi.org/10.1007/bf01081318
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/37317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043671387
133 https://doi.org/10.1038/37317
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nature06049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047198038
136 https://doi.org/10.1038/nature06049
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nature06229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016009275
139 https://doi.org/10.1038/nature06229
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nphys338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018536844
142 https://doi.org/10.1038/nphys338
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nphys461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041009887
145 https://doi.org/10.1038/nphys461
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nphys595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037339175
148 https://doi.org/10.1038/nphys595
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nphys620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011759551
151 https://doi.org/10.1038/nphys620
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1017/s0263034600003384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053758225
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.870766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006245358
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1063/1.871619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039419295
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1088/0029-5515/26/5/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058984050
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1088/0034-4885/67/6/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021754980
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1088/1367-2630/8/1/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025107531
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physreva.52.4747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060490970
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physreva.54.1597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060491748
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physreva.61.043802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060496120
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.100.095004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753020
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.59.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796202
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.79.1006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815629
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.83.5483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820557
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.89.133002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825356
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.93.115002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027186295
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.96.125004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832001
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.97.023901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832543
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.99.085001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834490
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1364/ol.2.000027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065215539
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1364/ol.32.000310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224588
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.457334.2 schema:alternateName CEA Saclay
194 schema:name CEA, IRAMIS, Service des Photons Atomes et Molécules, F-91191 Gif-sur-Yvette, France
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.463726.2 schema:alternateName Laboratoire pour l'Utilisation des Lasers Intenses
197 schema:name Laboratoire pour l’Utilisation des Lasers Intenses, CNRS, Ecole Polytechnique, 91 128 Palaiseau, France
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.6214.1 schema:alternateName University of Twente
200 schema:name Laser Physics and Nonlinear Optics Group, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...