Quantum criticality in heavy-fermion metals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-03-03

AUTHORS

Philipp Gegenwart, Qimiao Si, Frank Steglich

ABSTRACT

Quantum criticality describes the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. Heavy-fermion metals have in recent years emerged as prototypical systems to study quantum critical points. There have been considerable efforts, both experimental and theoretical, that use these magnetic systems to address problems that are central to the broad understanding of strongly correlated quantum matter. Here, we summarize some of the basic issues, including the extent to which the quantum criticality in heavy-fermion metals goes beyond the standard theory of order-parameter fluctuations, the nature of the Kondo effect in the quantum-critical regime, the non-Fermi-liquid phenomena that accompany quantum criticality and the interplay between quantum criticality and unconventional superconductivity. More... »

PAGES

186-197

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys892

DOI

http://dx.doi.org/10.1038/nphys892

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043296466


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "I. Physik. Institut, Georg-August Universit\u00e4t G\u00f6ttingen, D-37077 G\u00f6ttingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "I. Physik. Institut, Georg-August Universit\u00e4t G\u00f6ttingen, D-37077 G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gegenwart", 
        "givenName": "Philipp", 
        "id": "sg:person.0734165233.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734165233.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA", 
          "id": "http://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Si", 
        "givenName": "Qimiao", 
        "id": "sg:person.01345540473.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345540473.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Chemische Physik fester Stoffe, D-01187 Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Chemische Physik fester Stoffe, D-01187 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steglich", 
        "givenName": "Frank", 
        "id": "sg:person.01061214726.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature03129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005740509", 
          "https://doi.org/10.1038/nature03129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027454082", 
          "https://doi.org/10.1038/nature01774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35030039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028000164", 
          "https://doi.org/10.1038/35030039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050396810", 
          "https://doi.org/10.1038/nature04571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35066519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021983037", 
          "https://doi.org/10.1038/35066519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050158873", 
          "https://doi.org/10.1038/nature01044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039183001", 
          "https://doi.org/10.1038/nature01968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029319849", 
          "https://doi.org/10.1038/nature03279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01323427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004029618", 
          "https://doi.org/10.1007/bf01323427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/27838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020745542", 
          "https://doi.org/10.1038/27838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35020500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046008999", 
          "https://doi.org/10.1038/35020500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35101507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025237678", 
          "https://doi.org/10.1038/35101507"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-03-03", 
    "datePublishedReg": "2008-03-03", 
    "description": "Quantum criticality describes the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. Heavy-fermion metals have in recent years emerged as prototypical systems to study quantum critical points. There have been considerable efforts, both experimental and theoretical, that use these magnetic systems to address problems that are central to the broad understanding of strongly correlated quantum matter. Here, we summarize some of the basic issues, including the extent to which the quantum criticality in heavy-fermion metals goes beyond the standard theory of order-parameter fluctuations, the nature of the Kondo effect in the quantum-critical regime, the non-Fermi-liquid phenomena that accompany quantum criticality and the interplay between quantum criticality and unconventional superconductivity.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nphys892", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2995365", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "heavy-fermion metals", 
      "quantum criticality", 
      "quantum critical regime", 
      "quantum critical point", 
      "second-order phase transition", 
      "quantum matter", 
      "order parameter fluctuations", 
      "unconventional superconductivity", 
      "Kondo effect", 
      "collective fluctuations", 
      "magnetic systems", 
      "liquid phenomena", 
      "prototypical system", 
      "phase transition", 
      "standard theory", 
      "critical point", 
      "criticality", 
      "superconductivity", 
      "fluctuations", 
      "matter", 
      "metals", 
      "transition", 
      "basic issues", 
      "regime", 
      "theory", 
      "problem", 
      "system", 
      "temperature", 
      "considerable effort", 
      "phenomenon", 
      "interplay", 
      "point", 
      "recent years", 
      "nature", 
      "effect", 
      "understanding", 
      "issues", 
      "efforts", 
      "extent", 
      "broader understanding", 
      "years"
    ], 
    "name": "Quantum criticality in heavy-fermion metals", 
    "pagination": "186-197", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043296466"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys892"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys892", 
      "https://app.dimensions.ai/details/publication/pub.1043296466"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_459.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nphys892"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys892'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys892'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys892'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys892'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      78 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys892 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0206
4 schema:author N89a5c93b56744784ac9d11f761464497
5 schema:citation sg:pub.10.1007/bf01323427
6 sg:pub.10.1038/27838
7 sg:pub.10.1038/35020500
8 sg:pub.10.1038/35030039
9 sg:pub.10.1038/35066519
10 sg:pub.10.1038/35101507
11 sg:pub.10.1038/nature01044
12 sg:pub.10.1038/nature01774
13 sg:pub.10.1038/nature01968
14 sg:pub.10.1038/nature03129
15 sg:pub.10.1038/nature03279
16 sg:pub.10.1038/nature04571
17 schema:datePublished 2008-03-03
18 schema:datePublishedReg 2008-03-03
19 schema:description Quantum criticality describes the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. Heavy-fermion metals have in recent years emerged as prototypical systems to study quantum critical points. There have been considerable efforts, both experimental and theoretical, that use these magnetic systems to address problems that are central to the broad understanding of strongly correlated quantum matter. Here, we summarize some of the basic issues, including the extent to which the quantum criticality in heavy-fermion metals goes beyond the standard theory of order-parameter fluctuations, the nature of the Kondo effect in the quantum-critical regime, the non-Fermi-liquid phenomena that accompany quantum criticality and the interplay between quantum criticality and unconventional superconductivity.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N002e6196db7c46e5960ade2ba9c931e5
23 Nb1b28e3cd27d44eb9efc8ae4084e0108
24 sg:journal.1034717
25 schema:keywords Kondo effect
26 basic issues
27 broader understanding
28 collective fluctuations
29 considerable effort
30 critical point
31 criticality
32 effect
33 efforts
34 extent
35 fluctuations
36 heavy-fermion metals
37 interplay
38 issues
39 liquid phenomena
40 magnetic systems
41 matter
42 metals
43 nature
44 order parameter fluctuations
45 phase transition
46 phenomenon
47 point
48 problem
49 prototypical system
50 quantum critical point
51 quantum critical regime
52 quantum criticality
53 quantum matter
54 recent years
55 regime
56 second-order phase transition
57 standard theory
58 superconductivity
59 system
60 temperature
61 theory
62 transition
63 unconventional superconductivity
64 understanding
65 years
66 schema:name Quantum criticality in heavy-fermion metals
67 schema:pagination 186-197
68 schema:productId N5364c933e6434639af742c098cae8282
69 N7ff24dd6d3774f7da9acb77402124f87
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043296466
71 https://doi.org/10.1038/nphys892
72 schema:sdDatePublished 2022-09-02T15:53
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nd6ffe17194e743c39b892007cf19d5b4
75 schema:url https://doi.org/10.1038/nphys892
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N002e6196db7c46e5960ade2ba9c931e5 schema:issueNumber 3
80 rdf:type schema:PublicationIssue
81 N4c0d135c738f4082a601e2ac530d4cc0 rdf:first sg:person.01061214726.76
82 rdf:rest rdf:nil
83 N5364c933e6434639af742c098cae8282 schema:name doi
84 schema:value 10.1038/nphys892
85 rdf:type schema:PropertyValue
86 N7ff24dd6d3774f7da9acb77402124f87 schema:name dimensions_id
87 schema:value pub.1043296466
88 rdf:type schema:PropertyValue
89 N89a5c93b56744784ac9d11f761464497 rdf:first sg:person.0734165233.79
90 rdf:rest Ne16c2f6d6c004044bbdac57ce2716dec
91 Nb1b28e3cd27d44eb9efc8ae4084e0108 schema:volumeNumber 4
92 rdf:type schema:PublicationVolume
93 Nd6ffe17194e743c39b892007cf19d5b4 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Ne16c2f6d6c004044bbdac57ce2716dec rdf:first sg:person.01345540473.71
96 rdf:rest N4c0d135c738f4082a601e2ac530d4cc0
97 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
98 schema:name Physical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
101 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
104 schema:name Quantum Physics
105 rdf:type schema:DefinedTerm
106 sg:grant.2995365 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys892
107 rdf:type schema:MonetaryGrant
108 sg:journal.1034717 schema:issn 1745-2473
109 1745-2481
110 schema:name Nature Physics
111 schema:publisher Springer Nature
112 rdf:type schema:Periodical
113 sg:person.01061214726.76 schema:affiliation grid-institutes:grid.419507.e
114 schema:familyName Steglich
115 schema:givenName Frank
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76
117 rdf:type schema:Person
118 sg:person.01345540473.71 schema:affiliation grid-institutes:grid.21940.3e
119 schema:familyName Si
120 schema:givenName Qimiao
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345540473.71
122 rdf:type schema:Person
123 sg:person.0734165233.79 schema:affiliation grid-institutes:grid.7450.6
124 schema:familyName Gegenwart
125 schema:givenName Philipp
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734165233.79
127 rdf:type schema:Person
128 sg:pub.10.1007/bf01323427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004029618
129 https://doi.org/10.1007/bf01323427
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/27838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020745542
132 https://doi.org/10.1038/27838
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/35020500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046008999
135 https://doi.org/10.1038/35020500
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/35030039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028000164
138 https://doi.org/10.1038/35030039
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/35066519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021983037
141 https://doi.org/10.1038/35066519
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/35101507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025237678
144 https://doi.org/10.1038/35101507
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nature01044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050158873
147 https://doi.org/10.1038/nature01044
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nature01774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027454082
150 https://doi.org/10.1038/nature01774
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nature01968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039183001
153 https://doi.org/10.1038/nature01968
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nature03129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005740509
156 https://doi.org/10.1038/nature03129
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nature03279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029319849
159 https://doi.org/10.1038/nature03279
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nature04571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050396810
162 https://doi.org/10.1038/nature04571
163 rdf:type schema:CreativeWork
164 grid-institutes:grid.21940.3e schema:alternateName Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
165 schema:name Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
166 rdf:type schema:Organization
167 grid-institutes:grid.419507.e schema:alternateName Max-Planck-Institut für Chemische Physik fester Stoffe, D-01187 Dresden, Germany
168 schema:name Max-Planck-Institut für Chemische Physik fester Stoffe, D-01187 Dresden, Germany
169 rdf:type schema:Organization
170 grid-institutes:grid.7450.6 schema:alternateName I. Physik. Institut, Georg-August Universität Göttingen, D-37077 Göttingen, Germany
171 schema:name I. Physik. Institut, Georg-August Universität Göttingen, D-37077 Göttingen, Germany
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...