Towards the zero-surface-tension limit in granular fingering instability View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-01-27

AUTHORS

Xiang Cheng, Lei Xu, Aaron Patterson, Heinrich M. Jaeger, Sidney R. Nagel

ABSTRACT

The finger-like branching pattern that occurs when a less viscous fluid displaces a more viscous one confined between two parallel plates has been widely studied as a classical example of a mathematically tractable hydrodynamic instability1,2,3. Fingering in such Hele–Shaw geometries has been generated not only with newtonian fluids4,5,6 but also with various non-newtonian fluids7,8,9 including fine granular material displaced by gas, liquid or larger grains10,11,12,13,14,15. Here, we study a granular Hele–Shaw system to explore the zero-surface-tension property of granular ‘fluids’16. We demonstrate that the grain–gas interface exhibits fractal structure and sharp cusps, which are associated with the hitherto-unrealizable singular hydrodynamics predicted in the zero-surface-tension limit of normal fluid fingering2,17,18,19,20,21,22,23. Above the yield stress, the scaling for the finger width is distinct from that for ordinary fluids, reflecting unique granular properties such as friction-induced dissipation as opposed to viscous damping24,25,26,27. Despite such differences, the dimension of the global fractal structure and the shape of the singular cusps on the interface agree with the theories based on simple laplacian growth of conventional fluid fingering in the zero-surface-tension limit2,17,18,19,20,21,22,23. More... »

PAGES

234-237

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys834

DOI

http://dx.doi.org/10.1038/nphys834

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050118400


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA", 
          "id": "http://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Xiang", 
        "id": "sg:person.0577527346.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577527346.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Present address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA", 
            "Present address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Lei", 
        "id": "sg:person.014051304361.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014051304361.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA", 
          "id": "http://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patterson", 
        "givenName": "Aaron", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA", 
          "id": "http://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jaeger", 
        "givenName": "Heinrich M.", 
        "id": "sg:person.01252327714.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252327714.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA", 
          "id": "http://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagel", 
        "givenName": "Sidney R.", 
        "id": "sg:person.0727503755.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727503755.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature02901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036238286", 
          "https://doi.org/10.1038/nature02901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/320731a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049759411", 
          "https://doi.org/10.1038/320731a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/314141a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045206356", 
          "https://doi.org/10.1038/314141a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033032862", 
          "https://doi.org/10.1038/nature04801"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01-27", 
    "datePublishedReg": "2008-01-27", 
    "description": "The finger-like branching pattern that occurs when a less viscous fluid displaces a more viscous one confined between two parallel plates has been widely studied as a classical example of a mathematically tractable hydrodynamic instability1,2,3. Fingering in such Hele\u2013Shaw geometries has been generated not only with newtonian fluids4,5,6 but also with various non-newtonian fluids7,8,9 including fine granular material displaced by gas, liquid or larger grains10,11,12,13,14,15. Here, we study a granular Hele\u2013Shaw system to explore the zero-surface-tension property of granular \u2018fluids\u201916. We demonstrate that the grain\u2013gas interface exhibits fractal structure and sharp cusps, which are associated with the hitherto-unrealizable singular hydrodynamics predicted in the zero-surface-tension limit of normal fluid fingering2,17,18,19,20,21,22,23. Above the yield stress, the scaling for the finger width is distinct from that for ordinary fluids, reflecting unique granular properties such as friction-induced dissipation as opposed to viscous damping24,25,26,27. Despite such differences, the dimension of the global fractal structure and the shape of the singular cusps on the interface agree with the theories based on simple laplacian growth of conventional fluid fingering in the zero-surface-tension limit2,17,18,19,20,21,22,23.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nphys834", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3028404", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "zero-surface-tension limit", 
      "Hele-Shaw geometry", 
      "viscous fluid displaces", 
      "yield stress", 
      "granular materials", 
      "granular properties", 
      "fluid displaces", 
      "viscous one", 
      "parallel plates", 
      "finger width", 
      "ordinary fluids", 
      "fingering instability", 
      "Hele\u2013Shaw system", 
      "fractal structure", 
      "interface", 
      "properties", 
      "hydrodynamics", 
      "singular cusp", 
      "fingering", 
      "dissipation", 
      "gas", 
      "fine granular material", 
      "plate", 
      "liquid", 
      "structure", 
      "materials", 
      "geometry", 
      "width", 
      "sharp cusp", 
      "limit", 
      "fluid", 
      "shape", 
      "instability", 
      "stress", 
      "scaling", 
      "system", 
      "Laplacian growth", 
      "classical example", 
      "cusp", 
      "displaces", 
      "example", 
      "dimensions", 
      "one", 
      "theory", 
      "growth", 
      "patterns", 
      "differences", 
      "such differences", 
      "branching pattern"
    ], 
    "name": "Towards the zero-surface-tension limit in granular fingering instability", 
    "pagination": "234-237", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050118400"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys834"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys834", 
      "https://app.dimensions.ai/details/publication/pub.1050118400"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_472.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nphys834"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys834'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys834'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys834'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys834'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      22 PREDICATES      78 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys834 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author Nba5f553fee7c4ffcb1b225ff98ca2a07
4 schema:citation sg:pub.10.1038/314141a0
5 sg:pub.10.1038/320731a0
6 sg:pub.10.1038/nature02901
7 sg:pub.10.1038/nature04801
8 schema:datePublished 2008-01-27
9 schema:datePublishedReg 2008-01-27
10 schema:description The finger-like branching pattern that occurs when a less viscous fluid displaces a more viscous one confined between two parallel plates has been widely studied as a classical example of a mathematically tractable hydrodynamic instability1,2,3. Fingering in such Hele–Shaw geometries has been generated not only with newtonian fluids4,5,6 but also with various non-newtonian fluids7,8,9 including fine granular material displaced by gas, liquid or larger grains10,11,12,13,14,15. Here, we study a granular Hele–Shaw system to explore the zero-surface-tension property of granular ‘fluids’16. We demonstrate that the grain–gas interface exhibits fractal structure and sharp cusps, which are associated with the hitherto-unrealizable singular hydrodynamics predicted in the zero-surface-tension limit of normal fluid fingering2,17,18,19,20,21,22,23. Above the yield stress, the scaling for the finger width is distinct from that for ordinary fluids, reflecting unique granular properties such as friction-induced dissipation as opposed to viscous damping24,25,26,27. Despite such differences, the dimension of the global fractal structure and the shape of the singular cusps on the interface agree with the theories based on simple laplacian growth of conventional fluid fingering in the zero-surface-tension limit2,17,18,19,20,21,22,23.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N5a3cdcafb7e243d58dcde6343a9aa160
15 Na4c02cf6ad0344619c390154468b8253
16 sg:journal.1034717
17 schema:keywords Hele-Shaw geometry
18 Hele–Shaw system
19 Laplacian growth
20 branching pattern
21 classical example
22 cusp
23 differences
24 dimensions
25 displaces
26 dissipation
27 example
28 fine granular material
29 finger width
30 fingering
31 fingering instability
32 fluid
33 fluid displaces
34 fractal structure
35 gas
36 geometry
37 granular materials
38 granular properties
39 growth
40 hydrodynamics
41 instability
42 interface
43 limit
44 liquid
45 materials
46 one
47 ordinary fluids
48 parallel plates
49 patterns
50 plate
51 properties
52 scaling
53 shape
54 sharp cusp
55 singular cusp
56 stress
57 structure
58 such differences
59 system
60 theory
61 viscous fluid displaces
62 viscous one
63 width
64 yield stress
65 zero-surface-tension limit
66 schema:name Towards the zero-surface-tension limit in granular fingering instability
67 schema:pagination 234-237
68 schema:productId Ndfcb638b13334fb18d946d15a2de1f87
69 Ne1f3b2412124411d90b152afac6d5857
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050118400
71 https://doi.org/10.1038/nphys834
72 schema:sdDatePublished 2022-05-10T09:57
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Ne8a7ec1794a64a81ab0ccde4d69d8048
75 schema:url https://doi.org/10.1038/nphys834
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N249fc1a2c0e3484eb29f77d102b789ea rdf:first sg:person.01252327714.89
80 rdf:rest Ne17546d5981d4828ab6cbe0cc51c8727
81 N5a3cdcafb7e243d58dcde6343a9aa160 schema:issueNumber 3
82 rdf:type schema:PublicationIssue
83 N8c2d8d0d52fb4459b6ec20a6f3fa66cf rdf:first sg:person.014051304361.21
84 rdf:rest Nfd3a7d19664a4e459881ed460df52923
85 Na2bf9bdbf8b0477c8e43fc9d70e19a5a schema:affiliation grid-institutes:grid.170205.1
86 schema:familyName Patterson
87 schema:givenName Aaron
88 rdf:type schema:Person
89 Na4c02cf6ad0344619c390154468b8253 schema:volumeNumber 4
90 rdf:type schema:PublicationVolume
91 Nba5f553fee7c4ffcb1b225ff98ca2a07 rdf:first sg:person.0577527346.26
92 rdf:rest N8c2d8d0d52fb4459b6ec20a6f3fa66cf
93 Ndfcb638b13334fb18d946d15a2de1f87 schema:name doi
94 schema:value 10.1038/nphys834
95 rdf:type schema:PropertyValue
96 Ne17546d5981d4828ab6cbe0cc51c8727 rdf:first sg:person.0727503755.14
97 rdf:rest rdf:nil
98 Ne1f3b2412124411d90b152afac6d5857 schema:name dimensions_id
99 schema:value pub.1050118400
100 rdf:type schema:PropertyValue
101 Ne8a7ec1794a64a81ab0ccde4d69d8048 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nfd3a7d19664a4e459881ed460df52923 rdf:first Na2bf9bdbf8b0477c8e43fc9d70e19a5a
104 rdf:rest N249fc1a2c0e3484eb29f77d102b789ea
105 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
106 schema:name Mathematical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Sciences
110 rdf:type schema:DefinedTerm
111 sg:grant.3028404 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys834
112 rdf:type schema:MonetaryGrant
113 sg:journal.1034717 schema:issn 1745-2473
114 1745-2481
115 schema:name Nature Physics
116 schema:publisher Springer Nature
117 rdf:type schema:Periodical
118 sg:person.01252327714.89 schema:affiliation grid-institutes:grid.170205.1
119 schema:familyName Jaeger
120 schema:givenName Heinrich M.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252327714.89
122 rdf:type schema:Person
123 sg:person.014051304361.21 schema:affiliation grid-institutes:grid.38142.3c
124 schema:familyName Xu
125 schema:givenName Lei
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014051304361.21
127 rdf:type schema:Person
128 sg:person.0577527346.26 schema:affiliation grid-institutes:grid.170205.1
129 schema:familyName Cheng
130 schema:givenName Xiang
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577527346.26
132 rdf:type schema:Person
133 sg:person.0727503755.14 schema:affiliation grid-institutes:grid.170205.1
134 schema:familyName Nagel
135 schema:givenName Sidney R.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727503755.14
137 rdf:type schema:Person
138 sg:pub.10.1038/314141a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045206356
139 https://doi.org/10.1038/314141a0
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/320731a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049759411
142 https://doi.org/10.1038/320731a0
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nature02901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036238286
145 https://doi.org/10.1038/nature02901
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature04801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033032862
148 https://doi.org/10.1038/nature04801
149 rdf:type schema:CreativeWork
150 grid-institutes:grid.170205.1 schema:alternateName James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
151 schema:name James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
152 rdf:type schema:Organization
153 grid-institutes:grid.38142.3c schema:alternateName Present address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
154 schema:name James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
155 Present address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...