Triplet supercurrents in clean and disordered half-metallic ferromagnets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-02

AUTHORS

Matthias Eschrig, Tomas Löfwander

ABSTRACT

Interfaces between materials with differently ordered phases present unique opportunities to study fundamental problems in physics. One example is the interface between a singlet superconductor and a half-metallic ferromagnet, where Cooper pairing occurs between electrons with opposite spin on the superconducting side, whereas the other exhibits 100% spin polarization. The recent surprising observation of a supercurrent through half-metallic CrO2 therefore requires a mechanism for conversion between unpolarized and completely spin-polarized supercurrents. Here, we suggest a conversion mechanism based on electron spin precession together with triplet-pair rotation at interfaces with broken spin-rotation symmetry. In the diffusive limit (short mean free path), the triplet supercurrent is dominated by inter-related odd-frequency s-wave and even-frequency p-wave pairs. In the crossover to the ballistic limit, further symmetry components become relevant. The interface region exhibits a superconducting state of mixed-spin pairs with highly unusual symmetry properties that open up new perspectives for exotic Josephson devices. More... »

PAGES

138-143

Journal

TITLE

Nature Physics

ISSUE

2

VOLUME

4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys831

DOI

http://dx.doi.org/10.1038/nphys831

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000787694


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institut f\u00fcr Theoretische Festk\u00f6rperphysik and DFG-Center for Functional Nanostructures, Universit\u00e4t Karlsruhe, D-76128 Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eschrig", 
        "givenName": "Matthias", 
        "id": "sg:person.01067641323.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067641323.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institut f\u00fcr Theoretische Festk\u00f6rperphysik and DFG-Center for Functional Nanostructures, Universit\u00e4t Karlsruhe, D-76128 Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f6fwander", 
        "givenName": "Tomas", 
        "id": "sg:person.01276544527.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276544527.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.69.094501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000096287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.094501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000096287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.117006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008498151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.117006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008498151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012657873", 
          "https://doi.org/10.1038/nature04499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012657873", 
          "https://doi.org/10.1038/nature04499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012657873", 
          "https://doi.org/10.1038/nature04499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10909-007-9329-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013871702", 
          "https://doi.org/10.1007/s10909-007-9329-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.077003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016053365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.077003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016053365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019325970", 
          "https://doi.org/10.1038/nphys272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019325970", 
          "https://doi.org/10.1038/nphys272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019325970", 
          "https://doi.org/10.1038/nphys272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.10253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019408466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.10253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019408466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.037003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025093977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.037003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025093977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(59)90036-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029609788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(59)90036-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029609788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.137003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035987868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.137003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035987868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.107002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052485071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.107002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052485071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.8823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060548241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.8823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060548241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.63.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.63.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839218"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-02", 
    "datePublishedReg": "2008-02-01", 
    "description": "Interfaces between materials with differently ordered phases present unique opportunities to study fundamental problems in physics. One example is the interface between a singlet superconductor and a half-metallic ferromagnet, where Cooper pairing occurs between electrons with opposite spin on the superconducting side, whereas the other exhibits 100% spin polarization. The recent surprising observation of a supercurrent through half-metallic CrO2 therefore requires a mechanism for conversion between unpolarized and completely spin-polarized supercurrents. Here, we suggest a conversion mechanism based on electron spin precession together with triplet-pair rotation at interfaces with broken spin-rotation symmetry. In the diffusive limit (short mean free path), the triplet supercurrent is dominated by inter-related odd-frequency s-wave and even-frequency p-wave pairs. In the crossover to the ballistic limit, further symmetry components become relevant. The interface region exhibits a superconducting state of mixed-spin pairs with highly unusual symmetry properties that open up new perspectives for exotic Josephson devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys831", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Triplet supercurrents in clean and disordered half-metallic ferromagnets", 
    "pagination": "138-143", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "03c052fcb899a20c09641cec82aab8baf05628e17eb3d63b7a204b31f9e22055"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys831"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000787694"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys831", 
      "https://app.dimensions.ai/details/publication/pub.1000787694"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nphys831"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys831'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys831'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys831'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys831'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys831 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N459626b7294a490fbe59d4a5a85f1752
4 schema:citation sg:pub.10.1007/s10909-007-9329-6
5 sg:pub.10.1038/nature04499
6 sg:pub.10.1038/nphys272
7 https://doi.org/10.1016/0022-3697(59)90036-8
8 https://doi.org/10.1103/physrevb.38.8823
9 https://doi.org/10.1103/physrevb.55.10253
10 https://doi.org/10.1103/physrevb.69.094501
11 https://doi.org/10.1103/physrevlett.90.117006
12 https://doi.org/10.1103/physrevlett.90.137003
13 https://doi.org/10.1103/physrevlett.98.037003
14 https://doi.org/10.1103/physrevlett.98.077003
15 https://doi.org/10.1103/physrevlett.98.107002
16 https://doi.org/10.1103/revmodphys.63.239
17 schema:datePublished 2008-02
18 schema:datePublishedReg 2008-02-01
19 schema:description Interfaces between materials with differently ordered phases present unique opportunities to study fundamental problems in physics. One example is the interface between a singlet superconductor and a half-metallic ferromagnet, where Cooper pairing occurs between electrons with opposite spin on the superconducting side, whereas the other exhibits 100% spin polarization. The recent surprising observation of a supercurrent through half-metallic CrO2 therefore requires a mechanism for conversion between unpolarized and completely spin-polarized supercurrents. Here, we suggest a conversion mechanism based on electron spin precession together with triplet-pair rotation at interfaces with broken spin-rotation symmetry. In the diffusive limit (short mean free path), the triplet supercurrent is dominated by inter-related odd-frequency s-wave and even-frequency p-wave pairs. In the crossover to the ballistic limit, further symmetry components become relevant. The interface region exhibits a superconducting state of mixed-spin pairs with highly unusual symmetry properties that open up new perspectives for exotic Josephson devices.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N82dddab4d6a2436eab10a74cc7c507bd
24 Na9dd9a2b2a2940aa96144e8c5456812a
25 sg:journal.1034717
26 schema:name Triplet supercurrents in clean and disordered half-metallic ferromagnets
27 schema:pagination 138-143
28 schema:productId N359f1c06aea241e68124971f657a78e5
29 Naa214ffb7fa94e28b6a6063fd789e7ef
30 Ned2eeeac038443759bd1cd5ceaa89cec
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000787694
32 https://doi.org/10.1038/nphys831
33 schema:sdDatePublished 2019-04-11T00:03
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nf6960124110a49e98652ddd8a1f5b6c3
36 schema:url http://www.nature.com/articles/nphys831
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N359f1c06aea241e68124971f657a78e5 schema:name dimensions_id
41 schema:value pub.1000787694
42 rdf:type schema:PropertyValue
43 N459626b7294a490fbe59d4a5a85f1752 rdf:first sg:person.01067641323.20
44 rdf:rest Nbb43bc76bf3a469c99243520db662494
45 N82dddab4d6a2436eab10a74cc7c507bd schema:volumeNumber 4
46 rdf:type schema:PublicationVolume
47 Na9dd9a2b2a2940aa96144e8c5456812a schema:issueNumber 2
48 rdf:type schema:PublicationIssue
49 Naa214ffb7fa94e28b6a6063fd789e7ef schema:name readcube_id
50 schema:value 03c052fcb899a20c09641cec82aab8baf05628e17eb3d63b7a204b31f9e22055
51 rdf:type schema:PropertyValue
52 Nbb43bc76bf3a469c99243520db662494 rdf:first sg:person.01276544527.18
53 rdf:rest rdf:nil
54 Ned2eeeac038443759bd1cd5ceaa89cec schema:name doi
55 schema:value 10.1038/nphys831
56 rdf:type schema:PropertyValue
57 Nf6960124110a49e98652ddd8a1f5b6c3 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
60 schema:name Engineering
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
63 schema:name Materials Engineering
64 rdf:type schema:DefinedTerm
65 sg:journal.1034717 schema:issn 1745-2473
66 1745-2481
67 schema:name Nature Physics
68 rdf:type schema:Periodical
69 sg:person.01067641323.20 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
70 schema:familyName Eschrig
71 schema:givenName Matthias
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067641323.20
73 rdf:type schema:Person
74 sg:person.01276544527.18 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
75 schema:familyName Löfwander
76 schema:givenName Tomas
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276544527.18
78 rdf:type schema:Person
79 sg:pub.10.1007/s10909-007-9329-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013871702
80 https://doi.org/10.1007/s10909-007-9329-6
81 rdf:type schema:CreativeWork
82 sg:pub.10.1038/nature04499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012657873
83 https://doi.org/10.1038/nature04499
84 rdf:type schema:CreativeWork
85 sg:pub.10.1038/nphys272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019325970
86 https://doi.org/10.1038/nphys272
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0022-3697(59)90036-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029609788
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrevb.38.8823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060548241
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physrevb.55.10253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019408466
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrevb.69.094501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000096287
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevlett.90.117006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008498151
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.90.137003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035987868
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.98.037003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025093977
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevlett.98.077003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016053365
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevlett.98.107002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052485071
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/revmodphys.63.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839218
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
109 schema:name Institut für Theoretische Festkörperphysik and DFG-Center for Functional Nanostructures, Universität Karlsruhe, D-76128 Karlsruhe, Germany
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...