Tunable scaling behaviour observed in Barkhausen criticality of a ferromagnetic film View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-08

AUTHORS

Kwang-Su Ryu, Hiro Akinaga, Sung-Chul Shin

ABSTRACT

A ferromagnetic material shows a sequence of discrete and jerky domain jumps, known as the Barkhausen avalanche1,2, in the presence of an external magnetic field. Studies of Barkhausen avalanches reveal power-law scaling behaviour that suggests an underlying criticality3,4,5,6,7,8, as observed in a wide variety of systems such as superconductor vortices9, microfractures10, earthquakes11, lung inflations12, mass extinctions13, financial markets14 and charge-density waves15. The most interesting unsolved fundamental question is whether the universality in the scaling exponent holds regardless of the material and its detailed microstructure. Here we show that the scaling behaviour of Barkhausen criticality in a given ferromagnetic film is experimentally tunable by varying the temperature (not dimensionality). We observe for the first time that the scaling behaviour in the Barkhausen criticality of a given system crosses over between two universality classes when the relative contributions from the dipolar interaction and domain-wall energies are altered by an experimental parameter. More... »

PAGES

547

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys659

DOI

http://dx.doi.org/10.1038/nphys659

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048754287


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea Advanced Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.37172.30", 
          "name": [
            "Department of Physics and Center for Nanospinics of Spintronic Materials, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryu", 
        "givenName": "Kwang-Su", 
        "id": "sg:person.01206731747.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206731747.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akinaga", 
        "givenName": "Hiro", 
        "id": "sg:person.011471403225.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011471403225.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Advanced Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.37172.30", 
          "name": [
            "Department of Physics and Center for Nanospinics of Spintronic Materials, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Sung-Chul", 
        "id": "sg:person.0641615514.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641615514.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.70.3347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001094441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.3347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001094441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/41737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001853564", 
          "https://doi.org/10.1038/41737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/41737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001853564", 
          "https://doi.org/10.1038/41737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2006/08/p08020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005601080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020766071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020766071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021145451", 
          "https://doi.org/10.1038/17290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021145451", 
          "https://doi.org/10.1038/17290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.6353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021577077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.6353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021577077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/368615a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024648101", 
          "https://doi.org/10.1038/368615a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/41996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034057886", 
          "https://doi.org/10.1038/41996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/41996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034057886", 
          "https://doi.org/10.1038/41996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035392484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035392484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035544385", 
          "https://doi.org/10.1038/35065675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035544385", 
          "https://doi.org/10.1038/35065675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038761787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038761787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.4669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047852413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.4669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047852413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.49.r2532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049491857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.49.r2532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049491857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1467699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057709546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1490421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057712018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2189016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057844649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.7030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.7030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.155308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060613353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.155308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060613353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.2531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.2531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.1316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.1316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.087203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.087203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826371"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-08", 
    "datePublishedReg": "2007-08-01", 
    "description": "A ferromagnetic material shows a sequence of discrete and jerky domain jumps, known as the Barkhausen avalanche1,2, in the presence of an external magnetic field. Studies of Barkhausen avalanches reveal power-law scaling behaviour that suggests an underlying criticality3,4,5,6,7,8, as observed in a wide variety of systems such as superconductor vortices9, microfractures10, earthquakes11, lung inflations12, mass extinctions13, financial markets14 and charge-density waves15. The most interesting unsolved fundamental question is whether the universality in the scaling exponent holds regardless of the material and its detailed microstructure. Here we show that the scaling behaviour of Barkhausen criticality in a given ferromagnetic film is experimentally tunable by varying the temperature (not dimensionality). We observe for the first time that the scaling behaviour in the Barkhausen criticality of a given system crosses over between two universality classes when the relative contributions from the dipolar interaction and domain-wall energies are altered by an experimental parameter.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys659", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Tunable scaling behaviour observed in Barkhausen criticality of a ferromagnetic film", 
    "pagination": "547", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e841a814d77c26db234dc89bb4bdc1a7b5cce3a1649bb5c10acbc8d1619dd821"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys659"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048754287"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys659", 
      "https://app.dimensions.ai/details/publication/pub.1048754287"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T12:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys659"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys659'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys659'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys659'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys659'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys659 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc3d8461feb8b4737b7700a821585254d
4 schema:citation sg:pub.10.1038/17290
5 sg:pub.10.1038/35065675
6 sg:pub.10.1038/368615a0
7 sg:pub.10.1038/41737
8 sg:pub.10.1038/41996
9 https://doi.org/10.1063/1.1467699
10 https://doi.org/10.1063/1.1490421
11 https://doi.org/10.1063/1.2189016
12 https://doi.org/10.1088/1742-5468/2006/08/p08020
13 https://doi.org/10.1103/physrevb.48.7030
14 https://doi.org/10.1103/physrevb.58.6353
15 https://doi.org/10.1103/physrevb.71.155308
16 https://doi.org/10.1103/physreve.49.r2532
17 https://doi.org/10.1103/physreve.54.2531
18 https://doi.org/10.1103/physrevlett.50.1486
19 https://doi.org/10.1103/physrevlett.59.381
20 https://doi.org/10.1103/physrevlett.67.1334
21 https://doi.org/10.1103/physrevlett.70.3347
22 https://doi.org/10.1103/physrevlett.74.1206
23 https://doi.org/10.1103/physrevlett.75.276
24 https://doi.org/10.1103/physrevlett.75.4528
25 https://doi.org/10.1103/physrevlett.77.3855
26 https://doi.org/10.1103/physrevlett.79.4669
27 https://doi.org/10.1103/physrevlett.84.1316
28 https://doi.org/10.1103/physrevlett.84.4705
29 https://doi.org/10.1103/physrevlett.84.5415
30 https://doi.org/10.1103/physrevlett.90.087203
31 schema:datePublished 2007-08
32 schema:datePublishedReg 2007-08-01
33 schema:description A ferromagnetic material shows a sequence of discrete and jerky domain jumps, known as the Barkhausen avalanche1,2, in the presence of an external magnetic field. Studies of Barkhausen avalanches reveal power-law scaling behaviour that suggests an underlying criticality3,4,5,6,7,8, as observed in a wide variety of systems such as superconductor vortices9, microfractures10, earthquakes11, lung inflations12, mass extinctions13, financial markets14 and charge-density waves15. The most interesting unsolved fundamental question is whether the universality in the scaling exponent holds regardless of the material and its detailed microstructure. Here we show that the scaling behaviour of Barkhausen criticality in a given ferromagnetic film is experimentally tunable by varying the temperature (not dimensionality). We observe for the first time that the scaling behaviour in the Barkhausen criticality of a given system crosses over between two universality classes when the relative contributions from the dipolar interaction and domain-wall energies are altered by an experimental parameter.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N1ac067fcee414dbfb6fb6fafdb8e739d
38 N7375c6908a86484e9132e4212c8e0dcd
39 sg:journal.1034717
40 schema:name Tunable scaling behaviour observed in Barkhausen criticality of a ferromagnetic film
41 schema:pagination 547
42 schema:productId N1b432549e60547d6ab7d95fe1e253a0b
43 N948d8801f8ce42ff9d88d343dd03a52f
44 Ndc14da3a0da045c1a2a52a49c7bff9d3
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048754287
46 https://doi.org/10.1038/nphys659
47 schema:sdDatePublished 2019-04-10T12:59
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nac0362dfd80d4d379caadb1cece550e8
50 schema:url https://www.nature.com/articles/nphys659
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N1ac067fcee414dbfb6fb6fafdb8e739d schema:issueNumber 8
55 rdf:type schema:PublicationIssue
56 N1b432549e60547d6ab7d95fe1e253a0b schema:name readcube_id
57 schema:value e841a814d77c26db234dc89bb4bdc1a7b5cce3a1649bb5c10acbc8d1619dd821
58 rdf:type schema:PropertyValue
59 N7375c6908a86484e9132e4212c8e0dcd schema:volumeNumber 3
60 rdf:type schema:PublicationVolume
61 N948d8801f8ce42ff9d88d343dd03a52f schema:name dimensions_id
62 schema:value pub.1048754287
63 rdf:type schema:PropertyValue
64 Nac0362dfd80d4d379caadb1cece550e8 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nae701795c3f84d1095093e07a76678c0 rdf:first sg:person.0641615514.79
67 rdf:rest rdf:nil
68 Nc3d8461feb8b4737b7700a821585254d rdf:first sg:person.01206731747.21
69 rdf:rest Ne291ae660adf421b83c14d2a7b918395
70 Ndc14da3a0da045c1a2a52a49c7bff9d3 schema:name doi
71 schema:value 10.1038/nphys659
72 rdf:type schema:PropertyValue
73 Ne291ae660adf421b83c14d2a7b918395 rdf:first sg:person.011471403225.35
74 rdf:rest Nae701795c3f84d1095093e07a76678c0
75 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
76 schema:name Engineering
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
79 schema:name Materials Engineering
80 rdf:type schema:DefinedTerm
81 sg:journal.1034717 schema:issn 1745-2473
82 1745-2481
83 schema:name Nature Physics
84 rdf:type schema:Periodical
85 sg:person.011471403225.35 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
86 schema:familyName Akinaga
87 schema:givenName Hiro
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011471403225.35
89 rdf:type schema:Person
90 sg:person.01206731747.21 schema:affiliation https://www.grid.ac/institutes/grid.37172.30
91 schema:familyName Ryu
92 schema:givenName Kwang-Su
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206731747.21
94 rdf:type schema:Person
95 sg:person.0641615514.79 schema:affiliation https://www.grid.ac/institutes/grid.37172.30
96 schema:familyName Shin
97 schema:givenName Sung-Chul
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641615514.79
99 rdf:type schema:Person
100 sg:pub.10.1038/17290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021145451
101 https://doi.org/10.1038/17290
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/35065675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035544385
104 https://doi.org/10.1038/35065675
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/368615a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024648101
107 https://doi.org/10.1038/368615a0
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/41737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001853564
110 https://doi.org/10.1038/41737
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/41996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034057886
113 https://doi.org/10.1038/41996
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.1467699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057709546
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1063/1.1490421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057712018
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1063/1.2189016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057844649
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1088/1742-5468/2006/08/p08020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005601080
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevb.48.7030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060568987
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevb.58.6353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021577077
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevb.71.155308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060613353
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreve.49.r2532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049491857
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physreve.54.2531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060719730
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.50.1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788473
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.59.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796158
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.67.1334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803051
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.70.3347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001094441
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.74.1206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810338
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.75.276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811901
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.75.4528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020766071
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevlett.77.3855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035392484
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.79.4669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047852413
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.84.1316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820715
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.84.4705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038761787
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.84.5415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821430
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.90.087203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826371
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.208504.b schema:alternateName National Institute of Advanced Industrial Science and Technology
160 schema:name Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.37172.30 schema:alternateName Korea Advanced Institute of Science and Technology
163 schema:name Department of Physics and Center for Nanospinics of Spintronic Materials, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...