Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-01

AUTHORS

Masamitsu Hayashi, Luc Thomas, Charles Rettner, Rai Moriya, Stuart S. P. Parkin

ABSTRACT

The dynamics of the motion of domain walls (DWs) in magnetic materials has been extensively explored theoretically1,2,3. Depending on the driving force, conventionally magnetic field and, more recently, spin-polarized current4,5,6,7,8,9,10,11,12,13, the propagation of DWs changes from a simple translation to more complex precessional modes14. Experimentally, indirect evidence of this transition is found from a sudden drop in the wall’s velocity15,16,17,18, but direct observation of the precessional modes is lacking. Here we show experimentally, using a combination of quasi-static and real-time measurement techniques, that DWs propagate along permalloy nanowires with a periodic variation in the chirality of the walls. The frequency of this oscillation is consistent with a precession of the propagating DW, increasing linearly with field according to the Larmor precession frequency. Current in the nanowire, large enough to significantly influence the DW velocity18,19, has little effect on the precession frequency but can be used to adjust the phase of the wall’s precession. The highly coherent and reproducible motion of the DW revealed by our studies demonstrates that the DW is a well-defined macroscopic object whose phase is inextricably interlinked to the distance travelled by the DW. More... »

PAGES

21

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys464

DOI

http://dx.doi.org/10.1038/nphys464

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004585936


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "IBM Research Division, Almaden Research Center, San Jose, California 95120, USA", 
            "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayashi", 
        "givenName": "Masamitsu", 
        "id": "sg:person.01265526463.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265526463.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Research Division, Almaden Research Center, San Jose, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "Luc", 
        "id": "sg:person.01011555363.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011555363.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Research Division, Almaden Research Center, San Jose, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rettner", 
        "givenName": "Charles", 
        "id": "sg:person.01236253633.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236253633.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Research Division, Almaden Research Center, San Jose, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moriya", 
        "givenName": "Rai", 
        "id": "sg:person.01170140433.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170140433.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Research Division, Almaden Research Center, San Jose, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parkin", 
        "givenName": "Stuart S. P.", 
        "id": "sg:person.07706243232.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706243232.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.95.107204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001405630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.107204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001405630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(91)90129-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013697946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(91)90129-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013697946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.026601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018684130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.026601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018684130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10452-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021678993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.014407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030682949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.014407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030682949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.127204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032303895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.127204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032303895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041788616", 
          "https://doi.org/10.1038/nmat931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041788616", 
          "https://doi.org/10.1038/nmat931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044280391", 
          "https://doi.org/10.1038/nature05093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044280391", 
          "https://doi.org/10.1038/nature05093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044280391", 
          "https://doi.org/10.1038/nature05093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047328087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047328087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2003-10112-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047358232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.106601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048852340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.106601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048852340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051918806", 
          "https://doi.org/10.1038/nmat1477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051918806", 
          "https://doi.org/10.1038/nmat1477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.077205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052656212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.077205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052656212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1662444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057740771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1663252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057741652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.329464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057932675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.333530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057938154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.197207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.197207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.057203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.057203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.207205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.207205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0045993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085196696", 
          "https://doi.org/10.1007/bfb0045993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0045993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085196696", 
          "https://doi.org/10.1007/bfb0045993"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "The dynamics of the motion of domain walls (DWs) in magnetic materials has been extensively explored theoretically1,2,3. Depending on the driving force, conventionally magnetic field and, more recently, spin-polarized current4,5,6,7,8,9,10,11,12,13, the propagation of DWs changes from a simple translation to more complex precessional modes14. Experimentally, indirect evidence of this transition is found from a sudden drop in the wall\u2019s velocity15,16,17,18, but direct observation of the precessional modes is lacking. Here we show experimentally, using a combination of quasi-static and real-time measurement techniques, that DWs propagate along permalloy nanowires with a periodic variation in the chirality of the walls. The frequency of this oscillation is consistent with a precession of the propagating DW, increasing linearly with field according to the Larmor precession frequency. Current in the nanowire, large enough to significantly influence the DW velocity18,19, has little effect on the precession frequency but can be used to adjust the phase of the wall\u2019s precession. The highly coherent and reproducible motion of the DW revealed by our studies demonstrates that the DW is a well-defined macroscopic object whose phase is inextricably interlinked to the distance travelled by the DW.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys464", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires", 
    "pagination": "21", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "15da55e608b6acccda020d059bc459270b20ad522d1b22baabe19c0440000b0c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys464"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004585936"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys464", 
      "https://app.dimensions.ai/details/publication/pub.1004585936"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72847_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys464"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys464'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys464'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys464'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys464'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys464 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Ne9f797ced8ce410db3ecaad1a78c5a44
4 schema:citation sg:pub.10.1007/bfb0045993
5 sg:pub.10.1038/nature05093
6 sg:pub.10.1038/nmat1477
7 sg:pub.10.1038/nmat931
8 https://doi.org/10.1016/0304-8853(91)90129-x
9 https://doi.org/10.1063/1.1662444
10 https://doi.org/10.1063/1.1663252
11 https://doi.org/10.1063/1.329464
12 https://doi.org/10.1063/1.333530
13 https://doi.org/10.1103/physrevb.73.014407
14 https://doi.org/10.1103/physrevlett.92.077205
15 https://doi.org/10.1103/physrevlett.92.086601
16 https://doi.org/10.1103/physrevlett.93.127204
17 https://doi.org/10.1103/physrevlett.94.106601
18 https://doi.org/10.1103/physrevlett.95.026601
19 https://doi.org/10.1103/physrevlett.95.107204
20 https://doi.org/10.1103/physrevlett.96.197207
21 https://doi.org/10.1103/physrevlett.97.057203
22 https://doi.org/10.1103/physrevlett.97.207205
23 https://doi.org/10.1209/epl/i2003-10112-5
24 https://doi.org/10.1209/epl/i2004-10452-6
25 schema:datePublished 2007-01
26 schema:datePublishedReg 2007-01-01
27 schema:description The dynamics of the motion of domain walls (DWs) in magnetic materials has been extensively explored theoretically1,2,3. Depending on the driving force, conventionally magnetic field and, more recently, spin-polarized current4,5,6,7,8,9,10,11,12,13, the propagation of DWs changes from a simple translation to more complex precessional modes14. Experimentally, indirect evidence of this transition is found from a sudden drop in the wall’s velocity15,16,17,18, but direct observation of the precessional modes is lacking. Here we show experimentally, using a combination of quasi-static and real-time measurement techniques, that DWs propagate along permalloy nanowires with a periodic variation in the chirality of the walls. The frequency of this oscillation is consistent with a precession of the propagating DW, increasing linearly with field according to the Larmor precession frequency. Current in the nanowire, large enough to significantly influence the DW velocity18,19, has little effect on the precession frequency but can be used to adjust the phase of the wall’s precession. The highly coherent and reproducible motion of the DW revealed by our studies demonstrates that the DW is a well-defined macroscopic object whose phase is inextricably interlinked to the distance travelled by the DW.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N3b842ca4d0954be984ce44e6999bd2cb
32 N6afc9489341841a69a9d3d149797dda1
33 sg:journal.1034717
34 schema:name Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires
35 schema:pagination 21
36 schema:productId N22c041d65fe14148ac12cf758b23635d
37 N74996e774ea04f88882ad345790760ed
38 N9c5be3307df047c7847a0c4aa8ab95d2
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004585936
40 https://doi.org/10.1038/nphys464
41 schema:sdDatePublished 2019-04-11T12:53
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nc944814e25324316a74de37a13133d3a
44 schema:url https://www.nature.com/articles/nphys464
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N22c041d65fe14148ac12cf758b23635d schema:name doi
49 schema:value 10.1038/nphys464
50 rdf:type schema:PropertyValue
51 N3b842ca4d0954be984ce44e6999bd2cb schema:volumeNumber 3
52 rdf:type schema:PublicationVolume
53 N5ba8ae8d9add447cbf7c8e912fb445d2 rdf:first sg:person.07706243232.47
54 rdf:rest rdf:nil
55 N65af86d67a444ed3822b1583213acd46 rdf:first sg:person.01170140433.21
56 rdf:rest N5ba8ae8d9add447cbf7c8e912fb445d2
57 N6afc9489341841a69a9d3d149797dda1 schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 N6fd7f49a6c3b48c49239df4628b14e4d rdf:first sg:person.01236253633.11
60 rdf:rest N65af86d67a444ed3822b1583213acd46
61 N74996e774ea04f88882ad345790760ed schema:name readcube_id
62 schema:value 15da55e608b6acccda020d059bc459270b20ad522d1b22baabe19c0440000b0c
63 rdf:type schema:PropertyValue
64 N9c5be3307df047c7847a0c4aa8ab95d2 schema:name dimensions_id
65 schema:value pub.1004585936
66 rdf:type schema:PropertyValue
67 Nab21d87446744ff5a8fcafbdc9020a01 rdf:first sg:person.01011555363.08
68 rdf:rest N6fd7f49a6c3b48c49239df4628b14e4d
69 Nc944814e25324316a74de37a13133d3a schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Ne9f797ced8ce410db3ecaad1a78c5a44 rdf:first sg:person.01265526463.71
72 rdf:rest Nab21d87446744ff5a8fcafbdc9020a01
73 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
77 schema:name Other Physical Sciences
78 rdf:type schema:DefinedTerm
79 sg:journal.1034717 schema:issn 1745-2473
80 1745-2481
81 schema:name Nature Physics
82 rdf:type schema:Periodical
83 sg:person.01011555363.08 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
84 schema:familyName Thomas
85 schema:givenName Luc
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011555363.08
87 rdf:type schema:Person
88 sg:person.01170140433.21 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
89 schema:familyName Moriya
90 schema:givenName Rai
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170140433.21
92 rdf:type schema:Person
93 sg:person.01236253633.11 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
94 schema:familyName Rettner
95 schema:givenName Charles
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236253633.11
97 rdf:type schema:Person
98 sg:person.01265526463.71 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
99 schema:familyName Hayashi
100 schema:givenName Masamitsu
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265526463.71
102 rdf:type schema:Person
103 sg:person.07706243232.47 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
104 schema:familyName Parkin
105 schema:givenName Stuart S. P.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706243232.47
107 rdf:type schema:Person
108 sg:pub.10.1007/bfb0045993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085196696
109 https://doi.org/10.1007/bfb0045993
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nature05093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044280391
112 https://doi.org/10.1038/nature05093
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nmat1477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051918806
115 https://doi.org/10.1038/nmat1477
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nmat931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041788616
118 https://doi.org/10.1038/nmat931
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0304-8853(91)90129-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013697946
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1063/1.1662444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057740771
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1063/1.1663252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057741652
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1063/1.329464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057932675
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1063/1.333530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057938154
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.73.014407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030682949
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.92.077205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052656212
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.92.086601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047328087
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevlett.93.127204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032303895
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.94.106601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048852340
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.95.026601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018684130
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.95.107204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001405630
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.96.197207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832281
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.97.057203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832651
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.97.207205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833135
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1209/epl/i2003-10112-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047358232
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1209/epl/i2004-10452-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021678993
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
155 schema:name Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
156 IBM Research Division, Almaden Research Center, San Jose, California 95120, USA
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.481551.c schema:alternateName IBM Research - Almaden
159 schema:name IBM Research Division, Almaden Research Center, San Jose, California 95120, USA
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...