Symmetry and emergence View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-02

AUTHORS

Edward Witten

ABSTRACT

In a modern understanding of particle physics, global symmetries are approximate and gauge symmetries may be emergent. This view, which has echoes in condensed-matter physics, is supported by a variety of arguments from experiment and theory.

PAGES

116

References to SciGraph publications

  • 1975-08. Particle creation by black holes in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Journal

    TITLE

    Nature Physics

    ISSUE

    2

    VOLUME

    14

    Author Affiliations

    From Grant

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nphys4348

    DOI

    http://dx.doi.org/10.1038/nphys4348

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100745513


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Study", 
              "id": "https://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "Edward Witten is at the School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Witten", 
            "givenName": "Edward", 
            "id": "sg:person.016240210261.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016240210261.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.75.4724", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008900639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.75.4724", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008900639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02345020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010701796", 
              "https://doi.org/10.1007/bf02345020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02345020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010701796", 
              "https://doi.org/10.1007/bf02345020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.13.138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017551343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.13.138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017551343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(77)90076-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021567237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(77)90076-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021567237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.104.254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022159028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.104.254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022159028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(81)90590-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033258718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(81)90590-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033258718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.105.1413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051790458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.105.1413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051790458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.10.275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060682502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.10.275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060682502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.32.438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060778099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.32.438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060778099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.33.451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060778645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.33.451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060778645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.37.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060781021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.37.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060781021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.38.1440", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060781247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.38.1440", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060781247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.40.223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060782611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.40.223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060782611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.40.279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060782630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.40.279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060782630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.43.103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060784028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.43.103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060784028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.43.1566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060784213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.43.1566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060784213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1107483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062451407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1998.v2.n2.a1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456893"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-02", 
        "datePublishedReg": "2018-02-01", 
        "description": "In a modern understanding of particle physics, global symmetries are approximate and gauge symmetries may be emergent. This view, which has echoes in condensed-matter physics, is supported by a variety of arguments from experiment and theory.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nphys4348", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5545203", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1034717", 
            "issn": [
              "1745-2473", 
              "1745-2481"
            ], 
            "name": "Nature Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "name": "Symmetry and emergence", 
        "pagination": "116", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "88c6b97c2b0877a1a995b9f08249ca67af648bb27d47bb93ef074b97a02fcb7e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nphys4348"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100745513"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nphys4348", 
          "https://app.dimensions.ai/details/publication/pub.1100745513"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29200_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nphys4348"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys4348'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys4348'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys4348'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys4348'


     

    This table displays all metadata directly associated to this object as RDF triples.

    110 TRIPLES      20 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nphys4348 schema:author N8fd4171f66e546e1951d3e4bf3c5242e
    2 schema:citation sg:pub.10.1007/bf02345020
    3 https://doi.org/10.1016/0370-2693(77)90076-4
    4 https://doi.org/10.1016/0370-2693(81)90590-6
    5 https://doi.org/10.1103/physrev.104.254
    6 https://doi.org/10.1103/physrev.105.1413
    7 https://doi.org/10.1103/physrevd.10.275
    8 https://doi.org/10.1103/physrevlett.13.138
    9 https://doi.org/10.1103/physrevlett.32.438
    10 https://doi.org/10.1103/physrevlett.33.451
    11 https://doi.org/10.1103/physrevlett.37.8
    12 https://doi.org/10.1103/physrevlett.38.1440
    13 https://doi.org/10.1103/physrevlett.40.223
    14 https://doi.org/10.1103/physrevlett.40.279
    15 https://doi.org/10.1103/physrevlett.43.103
    16 https://doi.org/10.1103/physrevlett.43.1566
    17 https://doi.org/10.1103/physrevlett.75.4724
    18 https://doi.org/10.1126/science.1107483
    19 https://doi.org/10.4310/atmp.1998.v2.n2.a1
    20 schema:datePublished 2018-02
    21 schema:datePublishedReg 2018-02-01
    22 schema:description In a modern understanding of particle physics, global symmetries are approximate and gauge symmetries may be emergent. This view, which has echoes in condensed-matter physics, is supported by a variety of arguments from experiment and theory.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N016d28e872cb4e559e11619b80ed4292
    27 N178d4697f8344682ab0835074081b70b
    28 sg:journal.1034717
    29 schema:name Symmetry and emergence
    30 schema:pagination 116
    31 schema:productId N241d308af1ce4566ab7df3900c6a7e40
    32 N450ab4d064424daba70d45def00e9625
    33 Nc4f56d1df9e04300b15ddb6d7414aa55
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100745513
    35 https://doi.org/10.1038/nphys4348
    36 schema:sdDatePublished 2019-04-11T11:54
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N1588802cffec424598a3def820a05e77
    39 schema:url https://www.nature.com/articles/nphys4348
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N016d28e872cb4e559e11619b80ed4292 schema:volumeNumber 14
    44 rdf:type schema:PublicationVolume
    45 N1588802cffec424598a3def820a05e77 schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 N178d4697f8344682ab0835074081b70b schema:issueNumber 2
    48 rdf:type schema:PublicationIssue
    49 N241d308af1ce4566ab7df3900c6a7e40 schema:name dimensions_id
    50 schema:value pub.1100745513
    51 rdf:type schema:PropertyValue
    52 N450ab4d064424daba70d45def00e9625 schema:name readcube_id
    53 schema:value 88c6b97c2b0877a1a995b9f08249ca67af648bb27d47bb93ef074b97a02fcb7e
    54 rdf:type schema:PropertyValue
    55 N8fd4171f66e546e1951d3e4bf3c5242e rdf:first sg:person.016240210261.17
    56 rdf:rest rdf:nil
    57 Nc4f56d1df9e04300b15ddb6d7414aa55 schema:name doi
    58 schema:value 10.1038/nphys4348
    59 rdf:type schema:PropertyValue
    60 sg:grant.5545203 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys4348
    61 rdf:type schema:MonetaryGrant
    62 sg:journal.1034717 schema:issn 1745-2473
    63 1745-2481
    64 schema:name Nature Physics
    65 rdf:type schema:Periodical
    66 sg:person.016240210261.17 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
    67 schema:familyName Witten
    68 schema:givenName Edward
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016240210261.17
    70 rdf:type schema:Person
    71 sg:pub.10.1007/bf02345020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010701796
    72 https://doi.org/10.1007/bf02345020
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1016/0370-2693(77)90076-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021567237
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1016/0370-2693(81)90590-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033258718
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1103/physrev.104.254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022159028
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1103/physrev.105.1413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051790458
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1103/physrevd.10.275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060682502
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1103/physrevlett.13.138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017551343
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1103/physrevlett.32.438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060778099
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1103/physrevlett.33.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060778645
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1103/physrevlett.37.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060781021
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1103/physrevlett.38.1440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060781247
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1103/physrevlett.40.223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060782611
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1103/physrevlett.40.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060782630
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1103/physrevlett.43.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060784028
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1103/physrevlett.43.1566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060784213
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1103/physrevlett.75.4724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008900639
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1126/science.1107483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451407
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.4310/atmp.1998.v2.n2.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456893
    107 rdf:type schema:CreativeWork
    108 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
    109 schema:name Edward Witten is at the School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540, USA
    110 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...