Quantum tricritical points in NbFe2 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01

AUTHORS

Sven Friedemann, Will J. Duncan, Max Hirschberger, Thomas W. Bauer, Robert Küchler, Andreas Neubauer, Manuel Brando, Christian Pfleiderer, F. Malte Grosche

ABSTRACT

Quantum critical points (QCPs) emerge when a second-order phase transition is suppressed to zero temperature. In metals the quantum fluctuations at such a QCP can give rise to new phases, including unconventional superconductivity. Whereas antiferromagnetic QCPs have been studied in considerable detail, ferromagnetic (FM) QCPs are much harder to access. In almost all metals FM QCPs are avoided through either a change to first-order transitions or through an intervening spin-density-wave (SDW) phase. Here, we study the prototype of the second case, NbFe2. We demonstrate that the phase diagram can be modelled using a two-order-parameter theory in which the putative FM QCP is buried within a SDW phase. We establish the presence of quantum tricritical points (QTCPs) at which both the uniform and finite wavevector susceptibility diverge. The universal nature of our model suggests that such QTCPs arise naturally from the interplay between SDW and FM order and exist generically near a buried FM QCP of this type. Our results promote NbFe2 as the first example of a QTCP, which has been proposed as a key concept in a range of narrow-band metals, including the prominent heavy-fermion compound YbRh2Si2. More... »

PAGES

62

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys4242

DOI

http://dx.doi.org/10.1038/nphys4242

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091515537


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "HH Wills Laboratory, University of Bristol, Bristol BS8 1TL, UK", 
            "Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Friedemann", 
        "givenName": "Sven", 
        "id": "sg:person.01000635073.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000635073.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Holloway University of London", 
          "id": "https://www.grid.ac/institutes/grid.4970.a", 
          "name": [
            "Department of Physics, Royal Holloway, University of London, Egham TW20 0EX, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duncan", 
        "givenName": "Will J.", 
        "id": "sg:person.011212367717.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011212367717.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK", 
            "Physik-Department, Technische Universit\u00e4t M\u00fcnchen, James Franck Stra\u00dfe, 85748\u00a0Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirschberger", 
        "givenName": "Max", 
        "id": "sg:person.01234631615.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234631615.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MPI-CPfS, N\u00f6thnitzer Strasse, 01189 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "Thomas W.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MPI-CPfS, N\u00f6thnitzer Strasse, 01189 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00fcchler", 
        "givenName": "Robert", 
        "id": "sg:person.01354144026.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354144026.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik-Department, Technische Universit\u00e4t M\u00fcnchen, James Franck Stra\u00dfe, 85748\u00a0Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neubauer", 
        "givenName": "Andreas", 
        "id": "sg:person.0761403344.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761403344.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MPI-CPfS, N\u00f6thnitzer Strasse, 01189 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brando", 
        "givenName": "Manuel", 
        "id": "sg:person.01351632503.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351632503.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik-Department, Technische Universit\u00e4t M\u00fcnchen, James Franck Stra\u00dfe, 85748\u00a0Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pfleiderer", 
        "givenName": "Christian", 
        "id": "sg:person.0645154744.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154744.12"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Grosche", 
        "givenName": "F. Malte", 
        "id": "sg:person.01371466364.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371466364.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/revmodphys.79.1015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001523507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.1015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001523507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.224410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008411916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.224410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008411916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.216402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015129768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.216402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015129768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.165109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015388065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.165109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015388065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.024410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018191863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.024410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018191863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.4707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020537369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.4707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020537369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024144558", 
          "https://doi.org/10.1038/nphys3238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-3889(199911)8:7/9<593::aid-andp593>3.0.co;2-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032534067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-82499-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033001114", 
          "https://doi.org/10.1007/978-3-642-82499-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-82499-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033001114", 
          "https://doi.org/10.1007/978-3-642-82499-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.9452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033215713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.9452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033215713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036946746", 
          "https://doi.org/10.1038/nature07401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(77)90719-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038841167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(77)90719-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038841167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35106527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039062421", 
          "https://doi.org/10.1038/35106527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35106527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039062421", 
          "https://doi.org/10.1038/35106527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4526(94)91929-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045877394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4526(94)91929-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045877394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.256404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048733869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.256404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048733869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.207201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051556263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.207201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051556263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.147003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052323379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.147003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052323379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(94)00837-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052741112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.174404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052952792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.174404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052952792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphyscol:19786588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056997635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4748864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058058765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.8330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.8330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.026401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.026401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.256402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.256402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.037207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.037207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.88.025006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.88.025006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1176627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1176627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.56.4040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063110042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.57.46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063110777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.76.043704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063122936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.77.093712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063123730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.78.084707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063124259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7566/jpsj.82.123711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073829541"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01", 
    "datePublishedReg": "2018-01-01", 
    "description": "Quantum critical points (QCPs) emerge when a second-order phase transition is suppressed to zero temperature. In metals the quantum fluctuations at such a QCP can give rise to new phases, including unconventional superconductivity. Whereas antiferromagnetic QCPs have been studied in considerable detail, ferromagnetic (FM) QCPs are much harder to access. In almost all metals FM QCPs are avoided through either a change to first-order transitions or through an intervening spin-density-wave (SDW) phase. Here, we study the prototype of the second case, NbFe2. We demonstrate that the phase diagram can be modelled using a two-order-parameter theory in which the putative FM QCP is buried within a SDW phase. We establish the presence of quantum tricritical points (QTCPs) at which both the uniform and finite wavevector susceptibility diverge. The universal nature of our model suggests that such QTCPs arise naturally from the interplay between SDW and FM order and exist generically near a buried FM QCP of this type. Our results promote NbFe2 as the first example of a QTCP, which has been proposed as a key concept in a range of narrow-band metals, including the prominent heavy-fermion compound YbRh2Si2.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys4242", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6621799", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2786544", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2778732", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Quantum tricritical points in NbFe2", 
    "pagination": "62", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0d1db4ec0f84363059bcfcd9927dce9431b8d62761cc9844145e9fe976a99f0a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys4242"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091515537"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys4242", 
      "https://app.dimensions.ai/details/publication/pub.1091515537"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29207_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys4242"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys4242'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys4242'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys4242'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys4242'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys4242 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nba6c739752b84faca7e21d15275d6389
4 schema:citation sg:pub.10.1007/978-3-642-82499-9
5 sg:pub.10.1038/35106527
6 sg:pub.10.1038/nature07401
7 sg:pub.10.1038/nphys3238
8 https://doi.org/10.1002/(sici)1521-3889(199911)8:7/9<593::aid-andp593>3.0.co;2-f
9 https://doi.org/10.1016/0038-1098(77)90719-0
10 https://doi.org/10.1016/0304-8853(94)00837-x
11 https://doi.org/10.1016/0921-4526(94)91929-1
12 https://doi.org/10.1051/jphyscol:19786588
13 https://doi.org/10.1063/1.4748864
14 https://doi.org/10.1103/physrevb.55.8330
15 https://doi.org/10.1103/physrevb.55.9452
16 https://doi.org/10.1103/physrevb.79.224410
17 https://doi.org/10.1103/physrevb.87.024410
18 https://doi.org/10.1103/physrevb.88.165109
19 https://doi.org/10.1103/physrevb.91.174404
20 https://doi.org/10.1103/physrevlett.101.026401
21 https://doi.org/10.1103/physrevlett.103.207201
22 https://doi.org/10.1103/physrevlett.109.216402
23 https://doi.org/10.1103/physrevlett.110.256402
24 https://doi.org/10.1103/physrevlett.117.037207
25 https://doi.org/10.1103/physrevlett.82.4707
26 https://doi.org/10.1103/physrevlett.92.147003
27 https://doi.org/10.1103/physrevlett.93.256404
28 https://doi.org/10.1103/revmodphys.79.1015
29 https://doi.org/10.1103/revmodphys.88.025006
30 https://doi.org/10.1126/science.1176627
31 https://doi.org/10.1143/jpsj.56.4040
32 https://doi.org/10.1143/jpsj.57.46
33 https://doi.org/10.1143/jpsj.76.043704
34 https://doi.org/10.1143/jpsj.77.093712
35 https://doi.org/10.1143/jpsj.78.084707
36 https://doi.org/10.7566/jpsj.82.123711
37 schema:datePublished 2018-01
38 schema:datePublishedReg 2018-01-01
39 schema:description Quantum critical points (QCPs) emerge when a second-order phase transition is suppressed to zero temperature. In metals the quantum fluctuations at such a QCP can give rise to new phases, including unconventional superconductivity. Whereas antiferromagnetic QCPs have been studied in considerable detail, ferromagnetic (FM) QCPs are much harder to access. In almost all metals FM QCPs are avoided through either a change to first-order transitions or through an intervening spin-density-wave (SDW) phase. Here, we study the prototype of the second case, NbFe2. We demonstrate that the phase diagram can be modelled using a two-order-parameter theory in which the putative FM QCP is buried within a SDW phase. We establish the presence of quantum tricritical points (QTCPs) at which both the uniform and finite wavevector susceptibility diverge. The universal nature of our model suggests that such QTCPs arise naturally from the interplay between SDW and FM order and exist generically near a buried FM QCP of this type. Our results promote NbFe2 as the first example of a QTCP, which has been proposed as a key concept in a range of narrow-band metals, including the prominent heavy-fermion compound YbRh2Si2.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N033c1a2f3fb147ca8980f9c13c628beb
44 N65c5f8d0f4ab402686301f374334a4f5
45 sg:journal.1034717
46 schema:name Quantum tricritical points in NbFe2
47 schema:pagination 62
48 schema:productId N098780efb65d48e3bd92ff038f7b7265
49 Naaff5f11254f4cc297836108effb2035
50 Nc4fd5dca59a74ac6bac6524c03ac91b1
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091515537
52 https://doi.org/10.1038/nphys4242
53 schema:sdDatePublished 2019-04-11T11:55
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N6fbf3d1b82e04307861ecda8de82f4f7
56 schema:url https://www.nature.com/articles/nphys4242
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N033c1a2f3fb147ca8980f9c13c628beb schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N098780efb65d48e3bd92ff038f7b7265 schema:name dimensions_id
63 schema:value pub.1091515537
64 rdf:type schema:PropertyValue
65 N0ad6ff09dc494d1fa9fa9970d05ed972 rdf:first sg:person.01234631615.97
66 rdf:rest Nc3880ce542244a96979e3be406deaf38
67 N11bea0059a274ebbb0b891af4add708a rdf:first sg:person.0761403344.31
68 rdf:rest Nba6ebeb9a0ae4763a0df041d78a1cea5
69 N13f4bea3d9c445a2878daf1895f126e9 rdf:first sg:person.011212367717.92
70 rdf:rest N0ad6ff09dc494d1fa9fa9970d05ed972
71 N3113bcb946ac408898afa842b6d40108 rdf:first sg:person.01371466364.58
72 rdf:rest rdf:nil
73 N375dbac4f80c44c7a2cb4e2b89169820 rdf:first sg:person.0645154744.12
74 rdf:rest N3113bcb946ac408898afa842b6d40108
75 N4cb23f11295b4af2868856c7f375436e schema:name MPI-CPfS, Nöthnitzer Strasse, 01189 Dresden, Germany
76 rdf:type schema:Organization
77 N65c5f8d0f4ab402686301f374334a4f5 schema:volumeNumber 14
78 rdf:type schema:PublicationVolume
79 N6a3e617651604791a81fafe77366872f rdf:first sg:person.01354144026.87
80 rdf:rest N11bea0059a274ebbb0b891af4add708a
81 N6fbf3d1b82e04307861ecda8de82f4f7 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N709075ec9a0c400ba431a896bb9c10e1 schema:affiliation N9f134b351b954039accb3b84332bacc5
84 schema:familyName Bauer
85 schema:givenName Thomas W.
86 rdf:type schema:Person
87 N9f134b351b954039accb3b84332bacc5 schema:name MPI-CPfS, Nöthnitzer Strasse, 01189 Dresden, Germany
88 rdf:type schema:Organization
89 Naaff5f11254f4cc297836108effb2035 schema:name readcube_id
90 schema:value 0d1db4ec0f84363059bcfcd9927dce9431b8d62761cc9844145e9fe976a99f0a
91 rdf:type schema:PropertyValue
92 Nba6c739752b84faca7e21d15275d6389 rdf:first sg:person.01000635073.21
93 rdf:rest N13f4bea3d9c445a2878daf1895f126e9
94 Nba6ebeb9a0ae4763a0df041d78a1cea5 rdf:first sg:person.01351632503.98
95 rdf:rest N375dbac4f80c44c7a2cb4e2b89169820
96 Nbe5a0a037dce450f9472f3bf651bad1f schema:name MPI-CPfS, Nöthnitzer Strasse, 01189 Dresden, Germany
97 rdf:type schema:Organization
98 Nc3880ce542244a96979e3be406deaf38 rdf:first N709075ec9a0c400ba431a896bb9c10e1
99 rdf:rest N6a3e617651604791a81fafe77366872f
100 Nc4fd5dca59a74ac6bac6524c03ac91b1 schema:name doi
101 schema:value 10.1038/nphys4242
102 rdf:type schema:PropertyValue
103 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
104 schema:name Physical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
107 schema:name Quantum Physics
108 rdf:type schema:DefinedTerm
109 sg:grant.2778732 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys4242
110 rdf:type schema:MonetaryGrant
111 sg:grant.2786544 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys4242
112 rdf:type schema:MonetaryGrant
113 sg:grant.6621799 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys4242
114 rdf:type schema:MonetaryGrant
115 sg:journal.1034717 schema:issn 1745-2473
116 1745-2481
117 schema:name Nature Physics
118 rdf:type schema:Periodical
119 sg:person.01000635073.21 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
120 schema:familyName Friedemann
121 schema:givenName Sven
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000635073.21
123 rdf:type schema:Person
124 sg:person.011212367717.92 schema:affiliation https://www.grid.ac/institutes/grid.4970.a
125 schema:familyName Duncan
126 schema:givenName Will J.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011212367717.92
128 rdf:type schema:Person
129 sg:person.01234631615.97 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
130 schema:familyName Hirschberger
131 schema:givenName Max
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234631615.97
133 rdf:type schema:Person
134 sg:person.01351632503.98 schema:affiliation N4cb23f11295b4af2868856c7f375436e
135 schema:familyName Brando
136 schema:givenName Manuel
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351632503.98
138 rdf:type schema:Person
139 sg:person.01354144026.87 schema:affiliation Nbe5a0a037dce450f9472f3bf651bad1f
140 schema:familyName Küchler
141 schema:givenName Robert
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354144026.87
143 rdf:type schema:Person
144 sg:person.01371466364.58 schema:familyName Grosche
145 schema:givenName F. Malte
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371466364.58
147 rdf:type schema:Person
148 sg:person.0645154744.12 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
149 schema:familyName Pfleiderer
150 schema:givenName Christian
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154744.12
152 rdf:type schema:Person
153 sg:person.0761403344.31 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
154 schema:familyName Neubauer
155 schema:givenName Andreas
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761403344.31
157 rdf:type schema:Person
158 sg:pub.10.1007/978-3-642-82499-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033001114
159 https://doi.org/10.1007/978-3-642-82499-9
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/35106527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039062421
162 https://doi.org/10.1038/35106527
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nature07401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036946746
165 https://doi.org/10.1038/nature07401
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nphys3238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024144558
168 https://doi.org/10.1038/nphys3238
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/(sici)1521-3889(199911)8:7/9<593::aid-andp593>3.0.co;2-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1032534067
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/0038-1098(77)90719-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038841167
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0304-8853(94)00837-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052741112
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/0921-4526(94)91929-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045877394
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1051/jphyscol:19786588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056997635
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1063/1.4748864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058058765
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.55.8330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060584800
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.55.9452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033215713
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.79.224410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008411916
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.87.024410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018191863
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevb.88.165109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015388065
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.91.174404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052952792
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.101.026401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753742
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.103.207201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051556263
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.109.216402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015129768
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.110.256402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060761705
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.117.037207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765939
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.82.4707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020537369
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevlett.92.147003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052323379
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevlett.93.256404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048733869
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/revmodphys.79.1015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001523507
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/revmodphys.88.025006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839804
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.1176627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460362
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1143/jpsj.56.4040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063110042
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1143/jpsj.57.46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063110777
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1143/jpsj.76.043704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063122936
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1143/jpsj.77.093712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063123730
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1143/jpsj.78.084707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063124259
225 rdf:type schema:CreativeWork
226 https://doi.org/10.7566/jpsj.82.123711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073829541
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.4970.a schema:alternateName Royal Holloway University of London
229 schema:name Department of Physics, Royal Holloway, University of London, Egham TW20 0EX, UK
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
232 schema:name Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
233 HH Wills Laboratory, University of Bristol, Bristol BS8 1TL, UK
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
236 schema:name Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
237 Physik-Department, Technische Universität München, James Franck Straße, 85748 Garching, Germany
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...