Radiofrequency-dressed-state potentials for neutral atoms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-09-24

AUTHORS

S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, J. Schmiedmayer

ABSTRACT

Potentials for atoms can be created by external fields acting on properties such as magnetic moment, charge, polarizability, or by oscillating fields that couple internal states. The most prominent realization of the latter is the optical dipole potential formed by coupling ground and electronically excited states of an atom with light. Here, we present an extensive experimental analysis of potentials derived from radiofrequency (RF) coupling of electronic ground states. The coupling is magnetic and the vector character allows the design of versatile microscopic state-dependent potential landscapes. Compared with standard magnetic trapping, we find no additional heating or (collisional) loss up to densities of 1015 atoms cm−3. We demonstrate robust evaporative cooling in RF potentials, which allows easy production of Bose–Einstein condensates in complex potentials. Altogether, this makes RF dressing a new powerful tool for manipulating ultracold atoms complementary to magnetic trapping and optical dipole potentials. More... »

PAGES

710-716

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys420

DOI

http://dx.doi.org/10.1038/nphys420

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051638229


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physikalisches Institut, Universit\u00e4t Heidelberg, D-69120, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Physikalisches Institut, Universit\u00e4t Heidelberg, D-69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofferberth", 
        "givenName": "S.", 
        "id": "sg:person.01242303170.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242303170.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Electronic Structure and Laser, Foundation for Research and Technology, GR-71110, Heraklion, Greece", 
          "id": "http://www.grid.ac/institutes/grid.511958.1", 
          "name": [
            "Physikalisches Institut, Universit\u00e4t Heidelberg, D-69120, Heidelberg, Germany", 
            "Institute of Electronic Structure and Laser, Foundation for Research and Technology, GR-71110, Heraklion, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lesanovsky", 
        "givenName": "I.", 
        "id": "sg:person.0676666351.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676666351.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physikalisches Institut, Universit\u00e4t Heidelberg, D-69120, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Physikalisches Institut, Universit\u00e4t Heidelberg, D-69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fischer", 
        "givenName": "B.", 
        "id": "sg:person.015161257651.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015161257651.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physikalisches Institut, Universit\u00e4t Heidelberg, D-69120, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Physikalisches Institut, Universit\u00e4t Heidelberg, D-69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verdu", 
        "givenName": "J.", 
        "id": "sg:person.0624341073.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624341073.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Atominstitut \u00d6sterreichischer Universit\u00e4ten, TU-Wien, A-1020, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Physikalisches Institut, Universit\u00e4t Heidelberg, D-69120, Heidelberg, Germany", 
            "Atominstitut \u00d6sterreichischer Universit\u00e4ten, TU-Wien, A-1020, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmiedmayer", 
        "givenName": "J.", 
        "id": "sg:person.01063602470.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063602470.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014702735", 
          "https://doi.org/10.1038/nphys125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/e10053-002-0003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062895444", 
          "https://doi.org/10.1140/e10053-002-0003-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjd/e2005-00190-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011111208", 
          "https://doi.org/10.1140/epjd/e2005-00190-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/435440a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007655476", 
          "https://doi.org/10.1038/435440a"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-09-24", 
    "datePublishedReg": "2006-09-24", 
    "description": "Potentials for atoms can be created by external fields acting on properties such as magnetic moment, charge, polarizability, or by oscillating fields that couple internal states. The most prominent realization of the latter is the optical dipole potential formed by coupling ground and electronically excited states of an atom with light. Here, we present an extensive experimental analysis of potentials derived from radiofrequency (RF) coupling of electronic ground states. The coupling is magnetic and the vector character allows the design of versatile microscopic state-dependent potential landscapes. Compared with standard magnetic trapping, we find no additional heating or (collisional) loss up to densities of 1015\u2009atoms\u2009cm\u22123. We demonstrate robust evaporative cooling in RF potentials, which allows easy production of Bose\u2013Einstein condensates in complex potentials. Altogether, this makes RF dressing a new powerful tool for manipulating ultracold atoms complementary to magnetic trapping and optical dipole potentials.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nphys420", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3750375", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "optical dipole potential", 
      "magnetic trapping", 
      "dipole potential", 
      "electronic ground state", 
      "ultracold atoms", 
      "neutral atoms", 
      "Bose-Einstein", 
      "excited states", 
      "RF potential", 
      "prominent realization", 
      "ground state", 
      "potential landscape", 
      "magnetic moment", 
      "radiofrequency coupling", 
      "external field", 
      "vector character", 
      "additional heating", 
      "atoms", 
      "complex potentials", 
      "trapping", 
      "coupling", 
      "new powerful tool", 
      "internal states", 
      "evaporative cooling", 
      "field", 
      "polarizability", 
      "state", 
      "powerful tool", 
      "light", 
      "charge", 
      "realization", 
      "heating", 
      "RF", 
      "density", 
      "moment", 
      "potential", 
      "cooling", 
      "properties", 
      "experimental analysis", 
      "ground", 
      "latter", 
      "easy production", 
      "character", 
      "extensive experimental analysis", 
      "design", 
      "tool", 
      "analysis", 
      "production", 
      "landscape"
    ], 
    "name": "Radiofrequency-dressed-state potentials for neutral atoms", 
    "pagination": "710-716", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051638229"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys420"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys420", 
      "https://app.dimensions.ai/details/publication/pub.1051638229"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_431.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nphys420"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys420'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys420'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys420'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys420'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      77 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys420 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ndebaf9f74bd94559bac41500be87a36e
4 schema:citation sg:pub.10.1038/435440a
5 sg:pub.10.1038/nphys125
6 sg:pub.10.1140/e10053-002-0003-x
7 sg:pub.10.1140/epjd/e2005-00190-9
8 schema:datePublished 2006-09-24
9 schema:datePublishedReg 2006-09-24
10 schema:description Potentials for atoms can be created by external fields acting on properties such as magnetic moment, charge, polarizability, or by oscillating fields that couple internal states. The most prominent realization of the latter is the optical dipole potential formed by coupling ground and electronically excited states of an atom with light. Here, we present an extensive experimental analysis of potentials derived from radiofrequency (RF) coupling of electronic ground states. The coupling is magnetic and the vector character allows the design of versatile microscopic state-dependent potential landscapes. Compared with standard magnetic trapping, we find no additional heating or (collisional) loss up to densities of 1015 atoms cm−3. We demonstrate robust evaporative cooling in RF potentials, which allows easy production of Bose–Einstein condensates in complex potentials. Altogether, this makes RF dressing a new powerful tool for manipulating ultracold atoms complementary to magnetic trapping and optical dipole potentials.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N59a22334728e4f87a1c98a1ea60175e3
14 Nd8da752016d5499887d7c4fe1dfe6b76
15 sg:journal.1034717
16 schema:keywords Bose-Einstein
17 RF
18 RF potential
19 additional heating
20 analysis
21 atoms
22 character
23 charge
24 complex potentials
25 cooling
26 coupling
27 density
28 design
29 dipole potential
30 easy production
31 electronic ground state
32 evaporative cooling
33 excited states
34 experimental analysis
35 extensive experimental analysis
36 external field
37 field
38 ground
39 ground state
40 heating
41 internal states
42 landscape
43 latter
44 light
45 magnetic moment
46 magnetic trapping
47 moment
48 neutral atoms
49 new powerful tool
50 optical dipole potential
51 polarizability
52 potential
53 potential landscape
54 powerful tool
55 production
56 prominent realization
57 properties
58 radiofrequency coupling
59 realization
60 state
61 tool
62 trapping
63 ultracold atoms
64 vector character
65 schema:name Radiofrequency-dressed-state potentials for neutral atoms
66 schema:pagination 710-716
67 schema:productId N5e4ca3f6afd44874b2d20f7a8d20177c
68 N5ee6cb51326343c28dcd8a7c70e21c29
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051638229
70 https://doi.org/10.1038/nphys420
71 schema:sdDatePublished 2022-10-01T06:33
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Ne3923919660b4b37ab24fba67c55bf21
74 schema:url https://doi.org/10.1038/nphys420
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N59a22334728e4f87a1c98a1ea60175e3 schema:issueNumber 10
79 rdf:type schema:PublicationIssue
80 N5e4ca3f6afd44874b2d20f7a8d20177c schema:name dimensions_id
81 schema:value pub.1051638229
82 rdf:type schema:PropertyValue
83 N5ee6cb51326343c28dcd8a7c70e21c29 schema:name doi
84 schema:value 10.1038/nphys420
85 rdf:type schema:PropertyValue
86 N5f9453ed5ae948a78fab3158ecc9902c rdf:first sg:person.0676666351.09
87 rdf:rest N5fc6ee5e6cc44e34b24fa2558422588a
88 N5fc6ee5e6cc44e34b24fa2558422588a rdf:first sg:person.015161257651.08
89 rdf:rest Nf2645373479649fcb290321d165efb3d
90 Naddceeea75944b35b75b4e0ee3d06d39 rdf:first sg:person.01063602470.12
91 rdf:rest rdf:nil
92 Nd8da752016d5499887d7c4fe1dfe6b76 schema:volumeNumber 2
93 rdf:type schema:PublicationVolume
94 Ndebaf9f74bd94559bac41500be87a36e rdf:first sg:person.01242303170.79
95 rdf:rest N5f9453ed5ae948a78fab3158ecc9902c
96 Ne3923919660b4b37ab24fba67c55bf21 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Nf2645373479649fcb290321d165efb3d rdf:first sg:person.0624341073.81
99 rdf:rest Naddceeea75944b35b75b4e0ee3d06d39
100 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
104 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
105 rdf:type schema:DefinedTerm
106 sg:grant.3750375 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys420
107 rdf:type schema:MonetaryGrant
108 sg:journal.1034717 schema:issn 1745-2473
109 1745-2481
110 schema:name Nature Physics
111 schema:publisher Springer Nature
112 rdf:type schema:Periodical
113 sg:person.01063602470.12 schema:affiliation grid-institutes:grid.5329.d
114 schema:familyName Schmiedmayer
115 schema:givenName J.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063602470.12
117 rdf:type schema:Person
118 sg:person.01242303170.79 schema:affiliation grid-institutes:grid.7700.0
119 schema:familyName Hofferberth
120 schema:givenName S.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242303170.79
122 rdf:type schema:Person
123 sg:person.015161257651.08 schema:affiliation grid-institutes:grid.7700.0
124 schema:familyName Fischer
125 schema:givenName B.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015161257651.08
127 rdf:type schema:Person
128 sg:person.0624341073.81 schema:affiliation grid-institutes:grid.7700.0
129 schema:familyName Verdu
130 schema:givenName J.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624341073.81
132 rdf:type schema:Person
133 sg:person.0676666351.09 schema:affiliation grid-institutes:grid.511958.1
134 schema:familyName Lesanovsky
135 schema:givenName I.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676666351.09
137 rdf:type schema:Person
138 sg:pub.10.1038/435440a schema:sameAs https://app.dimensions.ai/details/publication/pub.1007655476
139 https://doi.org/10.1038/435440a
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nphys125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014702735
142 https://doi.org/10.1038/nphys125
143 rdf:type schema:CreativeWork
144 sg:pub.10.1140/e10053-002-0003-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062895444
145 https://doi.org/10.1140/e10053-002-0003-x
146 rdf:type schema:CreativeWork
147 sg:pub.10.1140/epjd/e2005-00190-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011111208
148 https://doi.org/10.1140/epjd/e2005-00190-9
149 rdf:type schema:CreativeWork
150 grid-institutes:grid.511958.1 schema:alternateName Institute of Electronic Structure and Laser, Foundation for Research and Technology, GR-71110, Heraklion, Greece
151 schema:name Institute of Electronic Structure and Laser, Foundation for Research and Technology, GR-71110, Heraklion, Greece
152 Physikalisches Institut, Universität Heidelberg, D-69120, Heidelberg, Germany
153 rdf:type schema:Organization
154 grid-institutes:grid.5329.d schema:alternateName Atominstitut Österreichischer Universitäten, TU-Wien, A-1020, Vienna, Austria
155 schema:name Atominstitut Österreichischer Universitäten, TU-Wien, A-1020, Vienna, Austria
156 Physikalisches Institut, Universität Heidelberg, D-69120, Heidelberg, Germany
157 rdf:type schema:Organization
158 grid-institutes:grid.7700.0 schema:alternateName Physikalisches Institut, Universität Heidelberg, D-69120, Heidelberg, Germany
159 schema:name Physikalisches Institut, Universität Heidelberg, D-69120, Heidelberg, Germany
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...