Room-temperature superfluidity in a polariton condensate View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09

AUTHORS

Giovanni Lerario, Antonio Fieramosca, Fábio Barachati, Dario Ballarini, Konstantinos S. Daskalakis, Lorenzo Dominici, Milena De Giorgi, Stefan A. Maier, Giuseppe Gigli, Stéphane Kéna-Cohen, Daniele Sanvitto

ABSTRACT

Superfluidity—the suppression of scattering in a quantum fluid at velocities below a critical value—is one of the most striking manifestations of the collective behaviour typical of Bose–Einstein condensates1. This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures2. In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier–Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering. More... »

PAGES

837

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys4147

DOI

http://dx.doi.org/10.1038/nphys4147

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085865861


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto di Nanotecnologia", 
          "id": "https://www.grid.ac/institutes/grid.494551.8", 
          "name": [
            "CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lerario", 
        "givenName": "Giovanni", 
        "id": "sg:person.012350760373.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350760373.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salento", 
          "id": "https://www.grid.ac/institutes/grid.9906.6", 
          "name": [
            "CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy", 
            "Dipartimento di matematica e fisica \u201cEnnio De Giorgi\u201d, Universit\u00e0 del Salento, Via Arnesano, 73100 Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fieramosca", 
        "givenName": "Antonio", 
        "id": "sg:person.015500074141.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015500074141.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ecole Polytechnique de Montr\u00e9al", 
          "id": "https://www.grid.ac/institutes/grid.183158.6", 
          "name": [
            "Department of Engineering Physics, \u00c9cole Polytechnique de Montr\u00e9al, Montr\u00e9al, Qu\u00e9bec H3C 3A7, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barachati", 
        "givenName": "F\u00e1bio", 
        "id": "sg:person.07413432124.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413432124.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Nanotecnologia", 
          "id": "https://www.grid.ac/institutes/grid.494551.8", 
          "name": [
            "CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ballarini", 
        "givenName": "Dario", 
        "id": "sg:person.01151435234.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151435234.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aalto University", 
          "id": "https://www.grid.ac/institutes/grid.5373.2", 
          "name": [
            "COMP Centre of Excellence, Department of Applied Physics, Aalto University, PO Box 15100, Fi-00076 Aalto, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daskalakis", 
        "givenName": "Konstantinos S.", 
        "id": "sg:person.015263470045.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015263470045.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Nanotecnologia", 
          "id": "https://www.grid.ac/institutes/grid.494551.8", 
          "name": [
            "CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dominici", 
        "givenName": "Lorenzo", 
        "id": "sg:person.0661206111.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661206111.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Nanotecnologia", 
          "id": "https://www.grid.ac/institutes/grid.494551.8", 
          "name": [
            "CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Giorgi", 
        "givenName": "Milena", 
        "id": "sg:person.016204215120.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016204215120.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Physics, Imperial College London, London SW7 2AZ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maier", 
        "givenName": "Stefan A.", 
        "id": "sg:person.0652737645.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652737645.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salento", 
          "id": "https://www.grid.ac/institutes/grid.9906.6", 
          "name": [
            "CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy", 
            "Dipartimento di matematica e fisica \u201cEnnio De Giorgi\u201d, Universit\u00e0 del Salento, Via Arnesano, 73100 Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gigli", 
        "givenName": "Giuseppe", 
        "id": "sg:person.01247265105.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247265105.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ecole Polytechnique de Montr\u00e9al", 
          "id": "https://www.grid.ac/institutes/grid.183158.6", 
          "name": [
            "Department of Engineering Physics, \u00c9cole Polytechnique de Montr\u00e9al, Montr\u00e9al, Qu\u00e9bec H3C 3A7, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00e9na-Cohen", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.01143410050.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143410050.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Nanotecnologia", 
          "id": "https://www.grid.ac/institutes/grid.494551.8", 
          "name": [
            "CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy", 
            "INFN, Sez. di Lecce, 73100 Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanvitto", 
        "givenName": "Daniele", 
        "id": "sg:person.0623153402.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623153402.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2011.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000281569", 
          "https://doi.org/10.1038/nphoton.2011.211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001312614", 
          "https://doi.org/10.1038/nphys1364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001312614", 
          "https://doi.org/10.1038/nphys1364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.075332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003538103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.075332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003538103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/141643a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004289410", 
          "https://doi.org/10.1038/141643a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/141643a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004289410", 
          "https://doi.org/10.1038/141643a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/141075a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005134942", 
          "https://doi.org/10.1038/141075a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/141075a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005134942", 
          "https://doi.org/10.1038/141075a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006638538", 
          "https://doi.org/10.1038/nphys1668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007019293", 
          "https://doi.org/10.1038/nmat3874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012418899", 
          "https://doi.org/10.1038/nphys2378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013511404", 
          "https://doi.org/10.1038/nphys1051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.035307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013555436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.035307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013555436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019628463", 
          "https://doi.org/10.1038/nphys1959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023480480", 
          "https://doi.org/10.1038/nature07640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023985386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023985386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.60.4114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026552669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.60.4114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026552669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.166401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030326145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.166401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030326145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.035301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030562865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.035301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030562865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033525520", 
          "https://doi.org/10.1038/nmat3825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/141074a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035314385", 
          "https://doi.org/10.1038/141074a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/141074a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035314385", 
          "https://doi.org/10.1038/141074a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037445021", 
          "https://doi.org/10.1038/ncomms9993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02731494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039064618", 
          "https://doi.org/10.1007/bf02731494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02731494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039064618", 
          "https://doi.org/10.1007/bf02731494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043649443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043649443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.080402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049272006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.080402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049272006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.60.356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060451782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.60.356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060451782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.75.884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060455080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.75.884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060455080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1202307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062464474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/lsa.2016.212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083914129", 
          "https://doi.org/10.1038/lsa.2016.212"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "Superfluidity\u2014the suppression of scattering in a quantum fluid at velocities below a critical value\u2014is one of the most striking manifestations of the collective behaviour typical of Bose\u2013Einstein condensates1. This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures2. In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier\u2013Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys4147", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3799239", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4246021", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2778575", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3959690", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2751487", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3795295", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Room-temperature superfluidity in a polariton condensate", 
    "pagination": "837", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ff3f7d92c756503404ddf0b8758d55e967d871001ac552a23ac7a9b0117e5734"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys4147"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085865861"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys4147", 
      "https://app.dimensions.ai/details/publication/pub.1085865861"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29182_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys4147"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys4147'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys4147'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys4147'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys4147'


 

This table displays all metadata directly associated to this object as RDF triples.

253 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys4147 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nf0b20a33a7fe4ad79452f8ea3230ab34
4 schema:citation sg:pub.10.1007/bf02731494
5 sg:pub.10.1038/141074a0
6 sg:pub.10.1038/141075a0
7 sg:pub.10.1038/141643a0
8 sg:pub.10.1038/lsa.2016.212
9 sg:pub.10.1038/nature07640
10 sg:pub.10.1038/ncomms9993
11 sg:pub.10.1038/nmat3825
12 sg:pub.10.1038/nmat3874
13 sg:pub.10.1038/nphoton.2011.211
14 sg:pub.10.1038/nphys1051
15 sg:pub.10.1038/nphys1364
16 sg:pub.10.1038/nphys1668
17 sg:pub.10.1038/nphys1959
18 sg:pub.10.1038/nphys2378
19 https://doi.org/10.1103/physrev.60.356
20 https://doi.org/10.1103/physrev.75.884
21 https://doi.org/10.1103/physreva.60.4114
22 https://doi.org/10.1103/physrevb.75.075332
23 https://doi.org/10.1103/physrevb.92.035307
24 https://doi.org/10.1103/physrevlett.107.080402
25 https://doi.org/10.1103/physrevlett.115.035301
26 https://doi.org/10.1103/physrevlett.85.2228
27 https://doi.org/10.1103/physrevlett.86.416
28 https://doi.org/10.1103/physrevlett.93.166401
29 https://doi.org/10.1103/revmodphys.85.299
30 https://doi.org/10.1126/science.1202307
31 schema:datePublished 2017-09
32 schema:datePublishedReg 2017-09-01
33 schema:description Superfluidity—the suppression of scattering in a quantum fluid at velocities below a critical value—is one of the most striking manifestations of the collective behaviour typical of Bose–Einstein condensates1. This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures2. In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier–Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf Nebc5615aab4d4026b42e4ca7ac52e61d
38 Nfbc785993caf4d26b882c6c7b6dc3189
39 sg:journal.1034717
40 schema:name Room-temperature superfluidity in a polariton condensate
41 schema:pagination 837
42 schema:productId N19fb5afddb744b9a84cbf54feadb17af
43 N4ad25caaa4ba412f952ebdb3ea9ed126
44 N68804e9c7faf47d990b1cd94d57bab06
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085865861
46 https://doi.org/10.1038/nphys4147
47 schema:sdDatePublished 2019-04-11T11:51
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nd213021bcf684525ac59cf5badbdccaf
50 schema:url https://www.nature.com/articles/nphys4147
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N15e6493656c140efa715c316eace010e rdf:first sg:person.0652737645.65
55 rdf:rest Na38e7e46ba1e4dd4913ca0d70a8e33e0
56 N17677054d7694f4c83350225a71e281d rdf:first sg:person.015263470045.21
57 rdf:rest N6b2e4cdf78bb4bd292f2601ccd2fec64
58 N19fb5afddb744b9a84cbf54feadb17af schema:name readcube_id
59 schema:value ff3f7d92c756503404ddf0b8758d55e967d871001ac552a23ac7a9b0117e5734
60 rdf:type schema:PropertyValue
61 N38072e4c5a4e4216990353e6f788dfac rdf:first sg:person.0623153402.13
62 rdf:rest rdf:nil
63 N3c95d72682b4424b81521a87d253131b rdf:first sg:person.016204215120.06
64 rdf:rest N15e6493656c140efa715c316eace010e
65 N4ad25caaa4ba412f952ebdb3ea9ed126 schema:name dimensions_id
66 schema:value pub.1085865861
67 rdf:type schema:PropertyValue
68 N602c25d7d06747318fceec0ef1596e66 rdf:first sg:person.01151435234.94
69 rdf:rest N17677054d7694f4c83350225a71e281d
70 N68617f2157714dc1873ec78518a534ac rdf:first sg:person.015500074141.06
71 rdf:rest N9b5199a52e9a4a9191fa0b74b035e710
72 N68804e9c7faf47d990b1cd94d57bab06 schema:name doi
73 schema:value 10.1038/nphys4147
74 rdf:type schema:PropertyValue
75 N6b2e4cdf78bb4bd292f2601ccd2fec64 rdf:first sg:person.0661206111.07
76 rdf:rest N3c95d72682b4424b81521a87d253131b
77 N9b5199a52e9a4a9191fa0b74b035e710 rdf:first sg:person.07413432124.31
78 rdf:rest N602c25d7d06747318fceec0ef1596e66
79 Na38e7e46ba1e4dd4913ca0d70a8e33e0 rdf:first sg:person.01247265105.59
80 rdf:rest Ncb6bc5c5b3834193a63e3441798caf69
81 Ncb6bc5c5b3834193a63e3441798caf69 rdf:first sg:person.01143410050.24
82 rdf:rest N38072e4c5a4e4216990353e6f788dfac
83 Nd213021bcf684525ac59cf5badbdccaf schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nebc5615aab4d4026b42e4ca7ac52e61d schema:volumeNumber 13
86 rdf:type schema:PublicationVolume
87 Nf0b20a33a7fe4ad79452f8ea3230ab34 rdf:first sg:person.012350760373.31
88 rdf:rest N68617f2157714dc1873ec78518a534ac
89 Nfbc785993caf4d26b882c6c7b6dc3189 schema:issueNumber 9
90 rdf:type schema:PublicationIssue
91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
92 schema:name Physical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
95 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
96 rdf:type schema:DefinedTerm
97 sg:grant.2751487 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys4147
98 rdf:type schema:MonetaryGrant
99 sg:grant.2778575 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys4147
100 rdf:type schema:MonetaryGrant
101 sg:grant.3795295 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys4147
102 rdf:type schema:MonetaryGrant
103 sg:grant.3799239 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys4147
104 rdf:type schema:MonetaryGrant
105 sg:grant.3959690 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys4147
106 rdf:type schema:MonetaryGrant
107 sg:grant.4246021 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys4147
108 rdf:type schema:MonetaryGrant
109 sg:journal.1034717 schema:issn 1745-2473
110 1745-2481
111 schema:name Nature Physics
112 rdf:type schema:Periodical
113 sg:person.01143410050.24 schema:affiliation https://www.grid.ac/institutes/grid.183158.6
114 schema:familyName Kéna-Cohen
115 schema:givenName Stéphane
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143410050.24
117 rdf:type schema:Person
118 sg:person.01151435234.94 schema:affiliation https://www.grid.ac/institutes/grid.494551.8
119 schema:familyName Ballarini
120 schema:givenName Dario
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151435234.94
122 rdf:type schema:Person
123 sg:person.012350760373.31 schema:affiliation https://www.grid.ac/institutes/grid.494551.8
124 schema:familyName Lerario
125 schema:givenName Giovanni
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350760373.31
127 rdf:type schema:Person
128 sg:person.01247265105.59 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
129 schema:familyName Gigli
130 schema:givenName Giuseppe
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247265105.59
132 rdf:type schema:Person
133 sg:person.015263470045.21 schema:affiliation https://www.grid.ac/institutes/grid.5373.2
134 schema:familyName Daskalakis
135 schema:givenName Konstantinos S.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015263470045.21
137 rdf:type schema:Person
138 sg:person.015500074141.06 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
139 schema:familyName Fieramosca
140 schema:givenName Antonio
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015500074141.06
142 rdf:type schema:Person
143 sg:person.016204215120.06 schema:affiliation https://www.grid.ac/institutes/grid.494551.8
144 schema:familyName De Giorgi
145 schema:givenName Milena
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016204215120.06
147 rdf:type schema:Person
148 sg:person.0623153402.13 schema:affiliation https://www.grid.ac/institutes/grid.494551.8
149 schema:familyName Sanvitto
150 schema:givenName Daniele
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623153402.13
152 rdf:type schema:Person
153 sg:person.0652737645.65 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
154 schema:familyName Maier
155 schema:givenName Stefan A.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652737645.65
157 rdf:type schema:Person
158 sg:person.0661206111.07 schema:affiliation https://www.grid.ac/institutes/grid.494551.8
159 schema:familyName Dominici
160 schema:givenName Lorenzo
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661206111.07
162 rdf:type schema:Person
163 sg:person.07413432124.31 schema:affiliation https://www.grid.ac/institutes/grid.183158.6
164 schema:familyName Barachati
165 schema:givenName Fábio
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413432124.31
167 rdf:type schema:Person
168 sg:pub.10.1007/bf02731494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039064618
169 https://doi.org/10.1007/bf02731494
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/141074a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035314385
172 https://doi.org/10.1038/141074a0
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/141075a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005134942
175 https://doi.org/10.1038/141075a0
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/141643a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004289410
178 https://doi.org/10.1038/141643a0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/lsa.2016.212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083914129
181 https://doi.org/10.1038/lsa.2016.212
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nature07640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023480480
184 https://doi.org/10.1038/nature07640
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/ncomms9993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037445021
187 https://doi.org/10.1038/ncomms9993
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nmat3825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033525520
190 https://doi.org/10.1038/nmat3825
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nmat3874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007019293
193 https://doi.org/10.1038/nmat3874
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nphoton.2011.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000281569
196 https://doi.org/10.1038/nphoton.2011.211
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/nphys1051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013511404
199 https://doi.org/10.1038/nphys1051
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/nphys1364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001312614
202 https://doi.org/10.1038/nphys1364
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/nphys1668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006638538
205 https://doi.org/10.1038/nphys1668
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nphys1959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019628463
208 https://doi.org/10.1038/nphys1959
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/nphys2378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012418899
211 https://doi.org/10.1038/nphys2378
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrev.60.356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060451782
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrev.75.884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060455080
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physreva.60.4114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026552669
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevb.75.075332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003538103
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevb.92.035307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013555436
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.107.080402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049272006
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.115.035301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030562865
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevlett.85.2228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043649443
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevlett.86.416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822995
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevlett.93.166401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030326145
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/revmodphys.85.299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023985386
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1126/science.1202307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464474
236 rdf:type schema:CreativeWork
237 https://www.grid.ac/institutes/grid.183158.6 schema:alternateName Ecole Polytechnique de Montréal
238 schema:name Department of Engineering Physics, École Polytechnique de Montréal, Montréal, Québec H3C 3A7, Canada
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.494551.8 schema:alternateName Istituto di Nanotecnologia
241 schema:name CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
242 INFN, Sez. di Lecce, 73100 Lecce, Italy
243 rdf:type schema:Organization
244 https://www.grid.ac/institutes/grid.5373.2 schema:alternateName Aalto University
245 schema:name COMP Centre of Excellence, Department of Applied Physics, Aalto University, PO Box 15100, Fi-00076 Aalto, Finland
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
248 schema:name Department of Physics, Imperial College London, London SW7 2AZ, UK
249 rdf:type schema:Organization
250 https://www.grid.ac/institutes/grid.9906.6 schema:alternateName University of Salento
251 schema:name CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
252 Dipartimento di matematica e fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
253 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...