Ontology type: schema:ScholarlyArticle Open Access: True
2017-09
AUTHORSGiovanni Lerario, Antonio Fieramosca, Fábio Barachati, Dario Ballarini, Konstantinos S. Daskalakis, Lorenzo Dominici, Milena De Giorgi, Stefan A. Maier, Giuseppe Gigli, Stéphane Kéna-Cohen, Daniele Sanvitto
ABSTRACTSuperfluidity—the suppression of scattering in a quantum fluid at velocities below a critical value—is one of the most striking manifestations of the collective behaviour typical of Bose–Einstein condensates1. This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures2. In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier–Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering. More... »
PAGES837
http://scigraph.springernature.com/pub.10.1038/nphys4147
DOIhttp://dx.doi.org/10.1038/nphys4147
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1085865861
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Istituto di Nanotecnologia",
"id": "https://www.grid.ac/institutes/grid.494551.8",
"name": [
"CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy"
],
"type": "Organization"
},
"familyName": "Lerario",
"givenName": "Giovanni",
"id": "sg:person.012350760373.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350760373.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Salento",
"id": "https://www.grid.ac/institutes/grid.9906.6",
"name": [
"CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy",
"Dipartimento di matematica e fisica \u201cEnnio De Giorgi\u201d, Universit\u00e0 del Salento, Via Arnesano, 73100 Lecce, Italy"
],
"type": "Organization"
},
"familyName": "Fieramosca",
"givenName": "Antonio",
"id": "sg:person.015500074141.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015500074141.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ecole Polytechnique de Montr\u00e9al",
"id": "https://www.grid.ac/institutes/grid.183158.6",
"name": [
"Department of Engineering Physics, \u00c9cole Polytechnique de Montr\u00e9al, Montr\u00e9al, Qu\u00e9bec H3C 3A7, Canada"
],
"type": "Organization"
},
"familyName": "Barachati",
"givenName": "F\u00e1bio",
"id": "sg:person.07413432124.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413432124.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Istituto di Nanotecnologia",
"id": "https://www.grid.ac/institutes/grid.494551.8",
"name": [
"CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy"
],
"type": "Organization"
},
"familyName": "Ballarini",
"givenName": "Dario",
"id": "sg:person.01151435234.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151435234.94"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Aalto University",
"id": "https://www.grid.ac/institutes/grid.5373.2",
"name": [
"COMP Centre of Excellence, Department of Applied Physics, Aalto University, PO Box 15100, Fi-00076 Aalto, Finland"
],
"type": "Organization"
},
"familyName": "Daskalakis",
"givenName": "Konstantinos S.",
"id": "sg:person.015263470045.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015263470045.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Istituto di Nanotecnologia",
"id": "https://www.grid.ac/institutes/grid.494551.8",
"name": [
"CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy"
],
"type": "Organization"
},
"familyName": "Dominici",
"givenName": "Lorenzo",
"id": "sg:person.0661206111.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661206111.07"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Istituto di Nanotecnologia",
"id": "https://www.grid.ac/institutes/grid.494551.8",
"name": [
"CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy"
],
"type": "Organization"
},
"familyName": "De Giorgi",
"givenName": "Milena",
"id": "sg:person.016204215120.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016204215120.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imperial College London",
"id": "https://www.grid.ac/institutes/grid.7445.2",
"name": [
"Department of Physics, Imperial College London, London SW7 2AZ, UK"
],
"type": "Organization"
},
"familyName": "Maier",
"givenName": "Stefan A.",
"id": "sg:person.0652737645.65",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652737645.65"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Salento",
"id": "https://www.grid.ac/institutes/grid.9906.6",
"name": [
"CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy",
"Dipartimento di matematica e fisica \u201cEnnio De Giorgi\u201d, Universit\u00e0 del Salento, Via Arnesano, 73100 Lecce, Italy"
],
"type": "Organization"
},
"familyName": "Gigli",
"givenName": "Giuseppe",
"id": "sg:person.01247265105.59",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247265105.59"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ecole Polytechnique de Montr\u00e9al",
"id": "https://www.grid.ac/institutes/grid.183158.6",
"name": [
"Department of Engineering Physics, \u00c9cole Polytechnique de Montr\u00e9al, Montr\u00e9al, Qu\u00e9bec H3C 3A7, Canada"
],
"type": "Organization"
},
"familyName": "K\u00e9na-Cohen",
"givenName": "St\u00e9phane",
"id": "sg:person.01143410050.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143410050.24"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Istituto di Nanotecnologia",
"id": "https://www.grid.ac/institutes/grid.494551.8",
"name": [
"CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy",
"INFN, Sez. di Lecce, 73100 Lecce, Italy"
],
"type": "Organization"
},
"familyName": "Sanvitto",
"givenName": "Daniele",
"id": "sg:person.0623153402.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623153402.13"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nphoton.2011.211",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000281569",
"https://doi.org/10.1038/nphoton.2011.211"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphys1364",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001312614",
"https://doi.org/10.1038/nphys1364"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphys1364",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001312614",
"https://doi.org/10.1038/nphys1364"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.75.075332",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003538103"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.75.075332",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003538103"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/141643a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004289410",
"https://doi.org/10.1038/141643a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/141643a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004289410",
"https://doi.org/10.1038/141643a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/141075a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005134942",
"https://doi.org/10.1038/141075a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/141075a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005134942",
"https://doi.org/10.1038/141075a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphys1668",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006638538",
"https://doi.org/10.1038/nphys1668"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmat3874",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007019293",
"https://doi.org/10.1038/nmat3874"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphys2378",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012418899",
"https://doi.org/10.1038/nphys2378"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphys1051",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013511404",
"https://doi.org/10.1038/nphys1051"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.92.035307",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013555436"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.92.035307",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013555436"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphys1959",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019628463",
"https://doi.org/10.1038/nphys1959"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature07640",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023480480",
"https://doi.org/10.1038/nature07640"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/revmodphys.85.299",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023985386"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/revmodphys.85.299",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023985386"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.60.4114",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026552669"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.60.4114",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026552669"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.93.166401",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030326145"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.93.166401",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030326145"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.115.035301",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030562865"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.115.035301",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030562865"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmat3825",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033525520",
"https://doi.org/10.1038/nmat3825"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/141074a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035314385",
"https://doi.org/10.1038/141074a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/141074a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035314385",
"https://doi.org/10.1038/141074a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ncomms9993",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037445021",
"https://doi.org/10.1038/ncomms9993"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02731494",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039064618",
"https://doi.org/10.1007/bf02731494"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02731494",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039064618",
"https://doi.org/10.1007/bf02731494"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.85.2228",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043649443"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.85.2228",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043649443"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.107.080402",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049272006"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.107.080402",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049272006"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.60.356",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060451782"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.60.356",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060451782"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.75.884",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060455080"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.75.884",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060455080"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.86.416",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060822995"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.86.416",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060822995"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1202307",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062464474"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/lsa.2016.212",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083914129",
"https://doi.org/10.1038/lsa.2016.212"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-09",
"datePublishedReg": "2017-09-01",
"description": "Superfluidity\u2014the suppression of scattering in a quantum fluid at velocities below a critical value\u2014is one of the most striking manifestations of the collective behaviour typical of Bose\u2013Einstein condensates1. This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures2. In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier\u2013Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering.",
"genre": "research_article",
"id": "sg:pub.10.1038/nphys4147",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.3799239",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.4246021",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2778575",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.3959690",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2751487",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.3795295",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1034717",
"issn": [
"1745-2473",
"1745-2481"
],
"name": "Nature Physics",
"type": "Periodical"
},
{
"issueNumber": "9",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "13"
}
],
"name": "Room-temperature superfluidity in a polariton condensate",
"pagination": "837",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"ff3f7d92c756503404ddf0b8758d55e967d871001ac552a23ac7a9b0117e5734"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/nphys4147"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1085865861"
]
}
],
"sameAs": [
"https://doi.org/10.1038/nphys4147",
"https://app.dimensions.ai/details/publication/pub.1085865861"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T11:51",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29182_00000003.jsonl",
"type": "ScholarlyArticle",
"url": "https://www.nature.com/articles/nphys4147"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys4147'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys4147'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys4147'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys4147'
This table displays all metadata directly associated to this object as RDF triples.
253 TRIPLES
21 PREDICATES
54 URIs
19 LITERALS
7 BLANK NODES