Topological defects in confined populations of spindle-shaped cells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09-12

AUTHORS

Guillaume Duclos, Christoph Erlenkämper, Jean-François Joanny, Pascal Silberzan

ABSTRACT

Most spindle-shaped cells (including smooth muscles and sarcomas) organize in vivo into well-aligned ‘nematic’ domains1,2,3, creating intrinsic topological defects that may be used to probe the behaviour of these active nematic systems. Active non-cellular nematics have been shown to be dominated by activity, yielding complex chaotic flows4,5. However, the regime in which live spindle-shaped cells operate, and the importance of cell–substrate friction in particular, remains largely unexplored. Using in vitro experiments, we show that these active cellular nematics operate in a regime in which activity is effectively damped by friction, and that the interaction between defects is controlled by the system’s elastic nematic energy. Due to the activity of the cells, these defects behave as self-propelled particles and pairwise annihilate until all displacements freeze as cell crowding increases6,7. When confined in mesoscopic circular domains, the system evolves towards two identical +1/2 disclinations facing each other. The most likely reduced positions of these defects are independent of the size of the disk, the cells’ activity or even the cell type, but are well described by equilibrium liquid crystal theory. These cell-based systems thus operate in a regime more stable than other active nematics, which may be necessary for their biological function. More... »

PAGES

58-62

Journal

TITLE

Nature Physics

ISSUE

1

VOLUME

13

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys3876

DOI

http://dx.doi.org/10.1038/nphys3876

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048508000


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute Curie", 
          "id": "https://www.grid.ac/institutes/grid.418596.7", 
          "name": [
            "Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University - Sorbonne Universit\u00e9s, UPMC\u2014CNRS - Equipe labellis\u00e9e Ligue Contre le Cancer, 75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duclos", 
        "givenName": "Guillaume", 
        "id": "sg:person.0722602266.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722602266.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute Curie", 
          "id": "https://www.grid.ac/institutes/grid.418596.7", 
          "name": [
            "Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University - Sorbonne Universit\u00e9s, UPMC\u2014CNRS - Equipe labellis\u00e9e Ligue Contre le Cancer, 75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erlenk\u00e4mper", 
        "givenName": "Christoph", 
        "id": "sg:person.01260335725.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260335725.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute Curie", 
          "id": "https://www.grid.ac/institutes/grid.418596.7", 
          "name": [
            "Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University - Sorbonne Universit\u00e9s, UPMC\u2014CNRS - Equipe labellis\u00e9e Ligue Contre le Cancer, 75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joanny", 
        "givenName": "Jean-Fran\u00e7ois", 
        "id": "sg:person.01314040302.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314040302.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute Curie", 
          "id": "https://www.grid.ac/institutes/grid.418596.7", 
          "name": [
            "Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University - Sorbonne Universit\u00e9s, UPMC\u2014CNRS - Equipe labellis\u00e9e Ligue Contre le Cancer, 75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silberzan", 
        "givenName": "Pascal", 
        "id": "sg:person.01365100557.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365100557.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/c5sm01382h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003608070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00848102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004906029", 
          "https://doi.org/10.1007/bf00848102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010027286", 
          "https://doi.org/10.1038/nmat4387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010831397", 
          "https://doi.org/10.1038/ncomms10557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1202032109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011937157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1007809109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012445544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014073058", 
          "https://doi.org/10.1038/nmeth.2209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2006.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016350008", 
          "https://doi.org/10.1038/nprot.2006.123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2006.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016350008", 
          "https://doi.org/10.1038/nprot.2006.123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2012.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019647309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10237-011-0325-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020697345", 
          "https://doi.org/10.1007/s10237-011-0325-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10237-011-0325-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020697345", 
          "https://doi.org/10.1007/s10237-011-0325-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.105504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021052542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.105504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021052542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021345963", 
          "https://doi.org/10.1038/nmat4357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-4827(68)90134-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023635472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024148730", 
          "https://doi.org/10.1038/ncomms4747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.228101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024871696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.228101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024871696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.021011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028156542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.021011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028156542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.118101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028997768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.118101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028997768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1010059108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030650357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.050502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031578989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.050502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031578989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.062307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036707559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.062307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036707559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3sm52323c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038647446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038708388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038708388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2013.0365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040400148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1215368110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042672393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044198087", 
          "https://doi.org/10.1038/nature11591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/166117.166151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045784181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s101890050024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052768027", 
          "https://doi.org/10.1007/s101890050024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1510973112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052992692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s101890070023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054521717", 
          "https://doi.org/10.1007/s101890070023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/14/11/115012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059135614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.168001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.168001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1254784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062470029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/anphys/192209180273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085296531"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09-12", 
    "datePublishedReg": "2016-09-12", 
    "description": "Most spindle-shaped cells (including smooth muscles and sarcomas) organize in vivo into well-aligned \u2018nematic\u2019 domains1,2,3, creating intrinsic topological defects that may be used to probe the behaviour of these active nematic systems. Active non-cellular nematics have been shown to be dominated by activity, yielding complex chaotic flows4,5. However, the regime in which live spindle-shaped cells operate, and the importance of cell\u2013substrate friction in particular, remains largely unexplored. Using in vitro experiments, we show that these active cellular nematics operate in a regime in which activity is effectively damped by friction, and that the interaction between defects is controlled by the system\u2019s elastic nematic energy. Due to the activity of the cells, these defects behave as self-propelled particles and pairwise annihilate until all displacements freeze as cell crowding increases6,7. When confined in mesoscopic circular domains, the system evolves towards two identical +1/2 disclinations facing each other. The most likely reduced positions of these defects are independent of the size of the disk, the cells\u2019 activity or even the cell type, but are well described by equilibrium liquid crystal theory. These cell-based systems thus operate in a regime more stable than other active nematics, which may be necessary for their biological function.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys3876", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Topological defects in confined populations of spindle-shaped cells", 
    "pagination": "58-62", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e7156c59a93c8ad728eb4d6c87c0c598639d586c5e44a2b12f731c7c737f84ca"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys3876"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048508000"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys3876", 
      "https://app.dimensions.ai/details/publication/pub.1048508000"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nphys3876"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys3876'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys3876'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys3876'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys3876'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      60 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys3876 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N923d4028a40f4e1ab65a6709094317f6
4 schema:citation sg:pub.10.1007/bf00848102
5 sg:pub.10.1007/s101890050024
6 sg:pub.10.1007/s101890070023
7 sg:pub.10.1007/s10237-011-0325-z
8 sg:pub.10.1038/nature11591
9 sg:pub.10.1038/ncomms10557
10 sg:pub.10.1038/ncomms4747
11 sg:pub.10.1038/nmat4357
12 sg:pub.10.1038/nmat4387
13 sg:pub.10.1038/nmeth.2209
14 sg:pub.10.1038/nprot.2006.123
15 https://doi.org/10.1016/0014-4827(68)90134-1
16 https://doi.org/10.1016/j.physrep.2012.03.004
17 https://doi.org/10.1039/c3sm52323c
18 https://doi.org/10.1039/c5sm01382h
19 https://doi.org/10.1051/anphys/192209180273
20 https://doi.org/10.1073/pnas.1007809109
21 https://doi.org/10.1073/pnas.1010059108
22 https://doi.org/10.1073/pnas.1202032109
23 https://doi.org/10.1073/pnas.1215368110
24 https://doi.org/10.1073/pnas.1510973112
25 https://doi.org/10.1088/1367-2630/14/11/115012
26 https://doi.org/10.1098/rsta.2013.0365
27 https://doi.org/10.1103/physreve.88.050502
28 https://doi.org/10.1103/physreve.90.062307
29 https://doi.org/10.1103/physrevlett.105.168001
30 https://doi.org/10.1103/physrevlett.110.228101
31 https://doi.org/10.1103/physrevlett.111.118101
32 https://doi.org/10.1103/physrevlett.88.105504
33 https://doi.org/10.1103/physrevx.5.031003
34 https://doi.org/10.1103/physrevx.6.021011
35 https://doi.org/10.1103/revmodphys.85.1143
36 https://doi.org/10.1126/science.1254784
37 https://doi.org/10.1145/166117.166151
38 schema:datePublished 2016-09-12
39 schema:datePublishedReg 2016-09-12
40 schema:description Most spindle-shaped cells (including smooth muscles and sarcomas) organize in vivo into well-aligned ‘nematic’ domains1,2,3, creating intrinsic topological defects that may be used to probe the behaviour of these active nematic systems. Active non-cellular nematics have been shown to be dominated by activity, yielding complex chaotic flows4,5. However, the regime in which live spindle-shaped cells operate, and the importance of cell–substrate friction in particular, remains largely unexplored. Using in vitro experiments, we show that these active cellular nematics operate in a regime in which activity is effectively damped by friction, and that the interaction between defects is controlled by the system’s elastic nematic energy. Due to the activity of the cells, these defects behave as self-propelled particles and pairwise annihilate until all displacements freeze as cell crowding increases6,7. When confined in mesoscopic circular domains, the system evolves towards two identical +1/2 disclinations facing each other. The most likely reduced positions of these defects are independent of the size of the disk, the cells’ activity or even the cell type, but are well described by equilibrium liquid crystal theory. These cell-based systems thus operate in a regime more stable than other active nematics, which may be necessary for their biological function.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N9b0ec09d6c804399aaa78fb8103f9eda
45 Naf619d5978d94e27bd83f46e930159c9
46 sg:journal.1034717
47 schema:name Topological defects in confined populations of spindle-shaped cells
48 schema:pagination 58-62
49 schema:productId N01ed8cdc15eb4e0993e96f22d6e11627
50 N6e972ef5c5f94315ad819a08ed64c47f
51 Ndc267d77631f48aea3ff58eedf2f62e8
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048508000
53 https://doi.org/10.1038/nphys3876
54 schema:sdDatePublished 2019-04-10T15:39
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Ncace3f60e99341d8bbef840b0548e054
57 schema:url http://www.nature.com/articles/nphys3876
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N01ed8cdc15eb4e0993e96f22d6e11627 schema:name doi
62 schema:value 10.1038/nphys3876
63 rdf:type schema:PropertyValue
64 N45324691258c4b418bc264894e96f245 rdf:first sg:person.01365100557.05
65 rdf:rest rdf:nil
66 N6e972ef5c5f94315ad819a08ed64c47f schema:name dimensions_id
67 schema:value pub.1048508000
68 rdf:type schema:PropertyValue
69 N923d4028a40f4e1ab65a6709094317f6 rdf:first sg:person.0722602266.56
70 rdf:rest Nd2b5e486e818406a9ebbc724243cfff4
71 N9b0ec09d6c804399aaa78fb8103f9eda schema:volumeNumber 13
72 rdf:type schema:PublicationVolume
73 Naf619d5978d94e27bd83f46e930159c9 schema:issueNumber 1
74 rdf:type schema:PublicationIssue
75 Nb8b9da4b938d471fa8a12c4ad948881d rdf:first sg:person.01314040302.05
76 rdf:rest N45324691258c4b418bc264894e96f245
77 Ncace3f60e99341d8bbef840b0548e054 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nd2b5e486e818406a9ebbc724243cfff4 rdf:first sg:person.01260335725.83
80 rdf:rest Nb8b9da4b938d471fa8a12c4ad948881d
81 Ndc267d77631f48aea3ff58eedf2f62e8 schema:name readcube_id
82 schema:value e7156c59a93c8ad728eb4d6c87c0c598639d586c5e44a2b12f731c7c737f84ca
83 rdf:type schema:PropertyValue
84 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
85 schema:name Biological Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
88 schema:name Biochemistry and Cell Biology
89 rdf:type schema:DefinedTerm
90 sg:journal.1034717 schema:issn 1745-2473
91 1745-2481
92 schema:name Nature Physics
93 rdf:type schema:Periodical
94 sg:person.01260335725.83 schema:affiliation https://www.grid.ac/institutes/grid.418596.7
95 schema:familyName Erlenkämper
96 schema:givenName Christoph
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260335725.83
98 rdf:type schema:Person
99 sg:person.01314040302.05 schema:affiliation https://www.grid.ac/institutes/grid.418596.7
100 schema:familyName Joanny
101 schema:givenName Jean-François
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314040302.05
103 rdf:type schema:Person
104 sg:person.01365100557.05 schema:affiliation https://www.grid.ac/institutes/grid.418596.7
105 schema:familyName Silberzan
106 schema:givenName Pascal
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365100557.05
108 rdf:type schema:Person
109 sg:person.0722602266.56 schema:affiliation https://www.grid.ac/institutes/grid.418596.7
110 schema:familyName Duclos
111 schema:givenName Guillaume
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722602266.56
113 rdf:type schema:Person
114 sg:pub.10.1007/bf00848102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004906029
115 https://doi.org/10.1007/bf00848102
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s101890050024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052768027
118 https://doi.org/10.1007/s101890050024
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s101890070023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054521717
121 https://doi.org/10.1007/s101890070023
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s10237-011-0325-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020697345
124 https://doi.org/10.1007/s10237-011-0325-z
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nature11591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044198087
127 https://doi.org/10.1038/nature11591
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/ncomms10557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010831397
130 https://doi.org/10.1038/ncomms10557
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/ncomms4747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024148730
133 https://doi.org/10.1038/ncomms4747
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nmat4357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021345963
136 https://doi.org/10.1038/nmat4357
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nmat4387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010027286
139 https://doi.org/10.1038/nmat4387
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nmeth.2209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014073058
142 https://doi.org/10.1038/nmeth.2209
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nprot.2006.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016350008
145 https://doi.org/10.1038/nprot.2006.123
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/0014-4827(68)90134-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023635472
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.physrep.2012.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019647309
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1039/c3sm52323c schema:sameAs https://app.dimensions.ai/details/publication/pub.1038647446
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1039/c5sm01382h schema:sameAs https://app.dimensions.ai/details/publication/pub.1003608070
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1051/anphys/192209180273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085296531
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1073/pnas.1007809109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012445544
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1073/pnas.1010059108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030650357
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1073/pnas.1202032109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011937157
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1073/pnas.1215368110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042672393
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1073/pnas.1510973112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052992692
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/1367-2630/14/11/115012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059135614
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1098/rsta.2013.0365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040400148
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physreve.88.050502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031578989
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physreve.90.062307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036707559
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.105.168001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757562
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.110.228101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024871696
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.111.118101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028997768
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.88.105504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021052542
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevx.5.031003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038708388
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevx.6.021011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028156542
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/revmodphys.85.1143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839747
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1126/science.1254784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062470029
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1145/166117.166151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045784181
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.418596.7 schema:alternateName Institute Curie
194 schema:name Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University - Sorbonne Universités, UPMC—CNRS - Equipe labellisée Ligue Contre le Cancer, 75005 Paris, France
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...