Ptychographic measurements of ultrahigh-intensity laser–plasma interactions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-04

AUTHORS

A. Leblanc, S. Monchocé, C. Bourassin-Bouchet, S. Kahaly, F. Quéré

ABSTRACT

The extreme intensities now delivered by femtosecond lasers make it possible to drive and control relativistic motion of charged particles with light1, opening a path to compact particle accelerators2,3 and coherent X-ray sources4,5. Accurately characterizing the dynamics of ultrahigh-intensity laser–plasma interactions as well as the resulting light and particle emissions is an essential step towards such achievements. This remains a considerable challenge, as the relevant scales typically range from picoseconds to attoseconds in time, and from micrometres to nanometres in space. In these experiments, owing to the extreme prevalent physical conditions, measurements can be performed only at macroscopic distances from the targets, yielding only partial information at these microscopic scales. This letter presents a major advance by applying the concepts of ptychography6,7 to such measurements, and thus retrieving microscopic information hardly accessible until now. This paves the way to a general approach for the metrology of extreme laser–plasma interactions on very small spatial and temporal scales. More... »

PAGES

301

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys3596

DOI

http://dx.doi.org/10.1038/nphys3596

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025913322


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Lasers, Interactions and Dynamics Laboratory (LIDyL), Commissariat \u00e0 l\u2019Energie Atomique, Universit\u00e9 Paris-Saclay, DSM/IRAMIS, CEN Saclay, 91191\u00a0Gif\u00a0sur\u00a0Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leblanc", 
        "givenName": "A.", 
        "id": "sg:person.0711324424.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711324424.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Lasers, Interactions and Dynamics Laboratory (LIDyL), Commissariat \u00e0 l\u2019Energie Atomique, Universit\u00e9 Paris-Saclay, DSM/IRAMIS, CEN Saclay, 91191\u00a0Gif\u00a0sur\u00a0Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monchoc\u00e9", 
        "givenName": "S.", 
        "id": "sg:person.0614265262.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614265262.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soleil Synchrotron", 
          "id": "https://www.grid.ac/institutes/grid.426328.9", 
          "name": [
            "Synchrotron SOLEIL, Universit\u00e9 Paris-Saclay, Saint-Aubin, BP\u00a034, 91192\u00a0Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bourassin-Bouchet", 
        "givenName": "C.", 
        "id": "sg:person.0653515063.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653515063.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Lasers, Interactions and Dynamics Laboratory (LIDyL), Commissariat \u00e0 l\u2019Energie Atomique, Universit\u00e9 Paris-Saclay, DSM/IRAMIS, CEN Saclay, 91191\u00a0Gif\u00a0sur\u00a0Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kahaly", 
        "givenName": "S.", 
        "id": "sg:person.01053512743.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053512743.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Lasers, Interactions and Dynamics Laboratory (LIDyL), Commissariat \u00e0 l\u2019Energie Atomique, Universit\u00e9 Paris-Saclay, DSM/IRAMIS, CEN Saclay, 91191\u00a0Gif\u00a0sur\u00a0Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qu\u00e9r\u00e9", 
        "givenName": "F.", 
        "id": "sg:person.01255213273.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255213273.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0034-4885/75/5/056401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001948595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/43/21/213001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003000892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/43/21/213001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003000892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1158573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006532067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008683664", 
          "https://doi.org/10.1038/nphys966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015710152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015710152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018536844", 
          "https://doi.org/10.1038/nphys338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018536844", 
          "https://doi.org/10.1038/nphys338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2011.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019241778", 
          "https://doi.org/10.1038/nphoton.2011.167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultramic.2008.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023426012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/8/1/019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025107531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/8/1/019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025107531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.021803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027430698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.021803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027430698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029960962", 
          "https://doi.org/10.1038/nphys2525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030587883", 
          "https://doi.org/10.1038/nphys1191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.185001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033284677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.185001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033284677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037339175", 
          "https://doi.org/10.1038/nphys595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037339175", 
          "https://doi.org/10.1038/nphys595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037497715", 
          "https://doi.org/10.1038/ncomms4403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042366006", 
          "https://doi.org/10.1038/nphoton.2013.217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/374630a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048776584", 
          "https://doi.org/10.1038/374630a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4914087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051858642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052789938", 
          "https://doi.org/10.1038/nphys1158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.011401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060500827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.011401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060500827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.224106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060619515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.224106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060619515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.87.035101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060744668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.87.035101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060744668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.095004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.095004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.145001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.145001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.175001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.175001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.145008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.145008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.015001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.015001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.125004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.125004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.034801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.034801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.085001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.085001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tim.2007.894185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061636959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1132838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062454741"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04", 
    "datePublishedReg": "2016-04-01", 
    "description": "The extreme intensities now delivered by femtosecond lasers make it possible to drive and control relativistic motion of charged particles with light1, opening a path to compact particle accelerators2,3 and coherent X-ray sources4,5. Accurately characterizing the dynamics of ultrahigh-intensity laser\u2013plasma interactions as well as the resulting light and particle emissions is an essential step towards such achievements. This remains a considerable challenge, as the relevant scales typically range from picoseconds to attoseconds in time, and from micrometres to nanometres in space. In these experiments, owing to the extreme prevalent physical conditions, measurements can be performed only at macroscopic distances from the targets, yielding only partial information at these microscopic scales. This letter presents a major advance by applying the concepts of ptychography6,7 to such measurements, and thus retrieving microscopic information hardly accessible until now. This paves the way to a general approach for the metrology of extreme laser\u2013plasma interactions on very small spatial and temporal scales.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys3596", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4523798", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3786678", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3781307", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Ptychographic measurements of ultrahigh-intensity laser\u2013plasma interactions", 
    "pagination": "301", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7b73db03c136f65408b0cde7fa23a356c92d492d61ea491c13218634dbb06cc2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys3596"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025913322"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys3596", 
      "https://app.dimensions.ai/details/publication/pub.1025913322"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys3596"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys3596'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys3596'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys3596'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys3596'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys3596 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N1cbc9312f09145a09532f9f86451cc23
4 schema:citation sg:pub.10.1038/374630a0
5 sg:pub.10.1038/ncomms4403
6 sg:pub.10.1038/nphoton.2011.167
7 sg:pub.10.1038/nphoton.2013.217
8 sg:pub.10.1038/nphys1158
9 sg:pub.10.1038/nphys1191
10 sg:pub.10.1038/nphys2525
11 sg:pub.10.1038/nphys338
12 sg:pub.10.1038/nphys595
13 sg:pub.10.1038/nphys966
14 https://doi.org/10.1016/j.ultramic.2008.12.011
15 https://doi.org/10.1063/1.4914087
16 https://doi.org/10.1088/0034-4885/75/5/056401
17 https://doi.org/10.1088/0953-4075/43/21/213001
18 https://doi.org/10.1088/1367-2630/8/1/019
19 https://doi.org/10.1103/physreva.71.011401
20 https://doi.org/10.1103/physreva.91.021803
21 https://doi.org/10.1103/physrevb.74.224106
22 https://doi.org/10.1103/physreve.87.035101
23 https://doi.org/10.1103/physrevlett.100.095004
24 https://doi.org/10.1103/physrevlett.101.145001
25 https://doi.org/10.1103/physrevlett.110.175001
26 https://doi.org/10.1103/physrevlett.111.185001
27 https://doi.org/10.1103/physrevlett.112.145008
28 https://doi.org/10.1103/physrevlett.116.015001
29 https://doi.org/10.1103/physrevlett.96.125004
30 https://doi.org/10.1103/physrevlett.98.034801
31 https://doi.org/10.1103/physrevlett.99.085001
32 https://doi.org/10.1103/revmodphys.78.309
33 https://doi.org/10.1103/revmodphys.81.445
34 https://doi.org/10.1103/revmodphys.85.1
35 https://doi.org/10.1109/tim.2007.894185
36 https://doi.org/10.1126/science.1132838
37 https://doi.org/10.1126/science.1158573
38 schema:datePublished 2016-04
39 schema:datePublishedReg 2016-04-01
40 schema:description The extreme intensities now delivered by femtosecond lasers make it possible to drive and control relativistic motion of charged particles with light1, opening a path to compact particle accelerators2,3 and coherent X-ray sources4,5. Accurately characterizing the dynamics of ultrahigh-intensity laser–plasma interactions as well as the resulting light and particle emissions is an essential step towards such achievements. This remains a considerable challenge, as the relevant scales typically range from picoseconds to attoseconds in time, and from micrometres to nanometres in space. In these experiments, owing to the extreme prevalent physical conditions, measurements can be performed only at macroscopic distances from the targets, yielding only partial information at these microscopic scales. This letter presents a major advance by applying the concepts of ptychography6,7 to such measurements, and thus retrieving microscopic information hardly accessible until now. This paves the way to a general approach for the metrology of extreme laser–plasma interactions on very small spatial and temporal scales.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N0ce0991f07b648f99e4587444001a085
45 Ne77ed61fcb9142559628cc5d9baf1589
46 sg:journal.1034717
47 schema:name Ptychographic measurements of ultrahigh-intensity laser–plasma interactions
48 schema:pagination 301
49 schema:productId N77a8c998fa7243ee86449cdabc61de82
50 Nc0395598fece4e31aa2edfae850cfa3b
51 Ne01045ee0e1a4cfdb3b23f326d538444
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025913322
53 https://doi.org/10.1038/nphys3596
54 schema:sdDatePublished 2019-04-10T19:45
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N01b6288e069a4444b4357d6c887b46d0
57 schema:url https://www.nature.com/articles/nphys3596
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N01b6288e069a4444b4357d6c887b46d0 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N09c64d1d459f40d1b23ca9d7b8427bc9 schema:name Lasers, Interactions and Dynamics Laboratory (LIDyL), Commissariat à l’Energie Atomique, Université Paris-Saclay, DSM/IRAMIS, CEN Saclay, 91191 Gif sur Yvette, France
64 rdf:type schema:Organization
65 N0ce0991f07b648f99e4587444001a085 schema:volumeNumber 12
66 rdf:type schema:PublicationVolume
67 N1cbc9312f09145a09532f9f86451cc23 rdf:first sg:person.0711324424.16
68 rdf:rest N2dad6e81e418498dbf236ae69202b2c8
69 N2dad6e81e418498dbf236ae69202b2c8 rdf:first sg:person.0614265262.53
70 rdf:rest Nb4ad9488560f45fb8dc5f73c565770ae
71 N59d7a3eba217411eaa9d4346a76ad569 schema:name Lasers, Interactions and Dynamics Laboratory (LIDyL), Commissariat à l’Energie Atomique, Université Paris-Saclay, DSM/IRAMIS, CEN Saclay, 91191 Gif sur Yvette, France
72 rdf:type schema:Organization
73 N73cec3a8c8d04139993c90de4a3bf552 schema:name Lasers, Interactions and Dynamics Laboratory (LIDyL), Commissariat à l’Energie Atomique, Université Paris-Saclay, DSM/IRAMIS, CEN Saclay, 91191 Gif sur Yvette, France
74 rdf:type schema:Organization
75 N77a8c998fa7243ee86449cdabc61de82 schema:name readcube_id
76 schema:value 7b73db03c136f65408b0cde7fa23a356c92d492d61ea491c13218634dbb06cc2
77 rdf:type schema:PropertyValue
78 N9147fd7155634218aaeefe66f5b5cec2 schema:name Lasers, Interactions and Dynamics Laboratory (LIDyL), Commissariat à l’Energie Atomique, Université Paris-Saclay, DSM/IRAMIS, CEN Saclay, 91191 Gif sur Yvette, France
79 rdf:type schema:Organization
80 Nb4ad9488560f45fb8dc5f73c565770ae rdf:first sg:person.0653515063.59
81 rdf:rest Nfad64706473240b49e07e5976e4d9e57
82 Nb67ee67af5684fb4881085419bc2c65c rdf:first sg:person.01255213273.47
83 rdf:rest rdf:nil
84 Nc0395598fece4e31aa2edfae850cfa3b schema:name dimensions_id
85 schema:value pub.1025913322
86 rdf:type schema:PropertyValue
87 Ne01045ee0e1a4cfdb3b23f326d538444 schema:name doi
88 schema:value 10.1038/nphys3596
89 rdf:type schema:PropertyValue
90 Ne77ed61fcb9142559628cc5d9baf1589 schema:issueNumber 4
91 rdf:type schema:PublicationIssue
92 Nfad64706473240b49e07e5976e4d9e57 rdf:first sg:person.01053512743.69
93 rdf:rest Nb67ee67af5684fb4881085419bc2c65c
94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
98 schema:name Other Physical Sciences
99 rdf:type schema:DefinedTerm
100 sg:grant.3781307 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys3596
101 rdf:type schema:MonetaryGrant
102 sg:grant.3786678 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys3596
103 rdf:type schema:MonetaryGrant
104 sg:grant.4523798 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys3596
105 rdf:type schema:MonetaryGrant
106 sg:journal.1034717 schema:issn 1745-2473
107 1745-2481
108 schema:name Nature Physics
109 rdf:type schema:Periodical
110 sg:person.01053512743.69 schema:affiliation N73cec3a8c8d04139993c90de4a3bf552
111 schema:familyName Kahaly
112 schema:givenName S.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053512743.69
114 rdf:type schema:Person
115 sg:person.01255213273.47 schema:affiliation N9147fd7155634218aaeefe66f5b5cec2
116 schema:familyName Quéré
117 schema:givenName F.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255213273.47
119 rdf:type schema:Person
120 sg:person.0614265262.53 schema:affiliation N59d7a3eba217411eaa9d4346a76ad569
121 schema:familyName Monchocé
122 schema:givenName S.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614265262.53
124 rdf:type schema:Person
125 sg:person.0653515063.59 schema:affiliation https://www.grid.ac/institutes/grid.426328.9
126 schema:familyName Bourassin-Bouchet
127 schema:givenName C.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653515063.59
129 rdf:type schema:Person
130 sg:person.0711324424.16 schema:affiliation N09c64d1d459f40d1b23ca9d7b8427bc9
131 schema:familyName Leblanc
132 schema:givenName A.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711324424.16
134 rdf:type schema:Person
135 sg:pub.10.1038/374630a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048776584
136 https://doi.org/10.1038/374630a0
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/ncomms4403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037497715
139 https://doi.org/10.1038/ncomms4403
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nphoton.2011.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019241778
142 https://doi.org/10.1038/nphoton.2011.167
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nphoton.2013.217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042366006
145 https://doi.org/10.1038/nphoton.2013.217
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nphys1158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052789938
148 https://doi.org/10.1038/nphys1158
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nphys1191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030587883
151 https://doi.org/10.1038/nphys1191
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nphys2525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029960962
154 https://doi.org/10.1038/nphys2525
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nphys338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018536844
157 https://doi.org/10.1038/nphys338
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nphys595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037339175
160 https://doi.org/10.1038/nphys595
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nphys966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008683664
163 https://doi.org/10.1038/nphys966
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ultramic.2008.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023426012
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1063/1.4914087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051858642
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/0034-4885/75/5/056401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001948595
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1088/0953-4075/43/21/213001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003000892
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1088/1367-2630/8/1/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025107531
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physreva.71.011401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060500827
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physreva.91.021803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027430698
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevb.74.224106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060619515
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physreve.87.035101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060744668
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.100.095004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753020
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.101.145001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754149
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.110.175001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060761480
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.111.185001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033284677
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.112.145008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060762677
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.116.015001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764764
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.96.125004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832001
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.98.034801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833406
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.99.085001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834490
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/revmodphys.78.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839613
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/revmodphys.81.445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839682
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/revmodphys.85.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015710152
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/tim.2007.894185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061636959
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1126/science.1132838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454741
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1126/science.1158573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006532067
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.426328.9 schema:alternateName Soleil Synchrotron
214 schema:name Synchrotron SOLEIL, Université Paris-Saclay, Saint-Aubin, BP 34, 91192 Gif-sur-Yvette, France
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...