Avalanche outbreaks emerging in cooperative contagions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09-07

AUTHORS

Weiran Cai, Li Chen, Fakhteh Ghanbarnejad, Peter Grassberger

ABSTRACT

The spreading of contagions can exhibit a percolation transition, which separates transitory prevalence from outbreaks that reach a finite fraction of the population1,2. Such transitions are commonly believed to be continuous, but empirical studies have shown more violent spreading modes when the participating agents are not limited to one type. Striking examples include the co-epidemic of the Spanish flu and pneumonia that occurred in 1918 (refs 3, 4), and, more recently, the concurrent prevalence of HIV/AIDS and a host of diseases5,6,7. It remains unclear to what extent an outbreak in the presence of interacting pathogens differs from that due to an ordinary single-agent process. Here we study a mechanistic model for understanding contagion processes involving inter-agent cooperation. Our stochastic simulations reveal the possible emergence of a massive avalanche-like outbreak right at the threshold, which is manifested as a discontinuous phase transition. Such an abrupt change arises only if the underlying network topology supports a bottleneck for cascaded mutual infections. Surprisingly, all these discontinuous transitions are accompanied by non-trivial critical behaviours, presenting a rare case of hybrid transition8. The findings may imply the origin of catastrophic occurrences in many realistic systems, from co-epidemics to financial contagions9. More... »

PAGES

936

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys3457

DOI

http://dx.doi.org/10.1038/nphys3457

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012670695


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "TU Dresden", 
          "id": "https://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Medical Faculty Carl Gustav Carus, Technische Universit\u00e4t Dresden, 01307 Dresden, Germany", 
            "Department of Electrical and Information Engineering, Technische Universit\u00e4t Dresden, 01069 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Weiran", 
        "id": "sg:person.011312215415.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011312215415.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Robert Koch Institute, 13353 Berlin, Germany", 
            "Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Li", 
        "id": "sg:person.016675512763.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016675512763.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Robert Koch Institute, 13353 Berlin, Germany", 
            "Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghanbarnejad", 
        "givenName": "Fakhteh", 
        "id": "sg:person.01141200702.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141200702.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany", 
            "J\u00fclich Supercomputing Centre, Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grassberger", 
        "givenName": "Peter", 
        "id": "sg:person.0704113004.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.92.218701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001140020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.218701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001140020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1167782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005403752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1167782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005403752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3314-3_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008266951", 
          "https://doi.org/10.1007/978-1-4757-3314-3_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010370510", 
          "https://doi.org/10.1038/nature08932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010370510", 
          "https://doi.org/10.1038/nature08932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7519(97)00189-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010736686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1408.071313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013034776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.035701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013267861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.035701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013267861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.255701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013445316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.255701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013445316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.048701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013649274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.048701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013649274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014594125", 
          "https://doi.org/10.1038/nphys2180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.225701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014694094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.225701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014694094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.ppat.1002464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017169472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02786829808965531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019137071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4324/9780203211595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025360260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.056101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026830761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.056101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026830761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029353566", 
          "https://doi.org/10.1038/nature07053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1419185112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035824369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.7332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038563506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.7332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038563506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0016836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043537891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.026114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043683964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.026114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043683964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1201.051442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047012101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1201.050979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047564794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1201.050979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047564794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1167053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047740321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1167053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047740321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/imr.12063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048671427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1206241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062464729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511791383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667199"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09-07", 
    "datePublishedReg": "2015-09-07", 
    "description": "The spreading of contagions can exhibit a percolation transition, which separates transitory prevalence from outbreaks that reach a finite fraction of the population1,2. Such transitions are commonly believed to be continuous, but empirical studies have shown more violent spreading modes when the participating agents are not limited to one type. Striking examples include the co-epidemic of the Spanish flu and pneumonia that occurred in 1918 (refs 3, 4), and, more recently, the concurrent prevalence of HIV/AIDS and a host of diseases5,6,7. It remains unclear to what extent an outbreak in the presence of interacting pathogens differs from that due to an ordinary single-agent process. Here we study a mechanistic model for understanding contagion processes involving inter-agent cooperation. Our stochastic simulations reveal the possible emergence of a massive avalanche-like outbreak right at the threshold, which is manifested as a discontinuous phase transition. Such an abrupt change arises only if the underlying network topology supports a bottleneck for cascaded mutual infections. Surprisingly, all these discontinuous transitions are accompanied by non-trivial critical behaviours, presenting a rare case of hybrid transition8. The findings may imply the origin of catastrophic occurrences in many realistic systems, from co-epidemics to financial contagions9.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys3457", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Avalanche outbreaks emerging in cooperative\u00a0contagions", 
    "pagination": "936", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3c5d232399fb8a794f616f35d5ed7b087a308dde61b2c6f6b3ddc4beaee9dd51"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys3457"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012670695"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys3457", 
      "https://app.dimensions.ai/details/publication/pub.1012670695"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys3457"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys3457'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys3457'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys3457'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys3457'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      54 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys3457 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N83f3dd2b64e64c749a42b08a67033392
4 schema:citation sg:pub.10.1007/978-1-4757-3314-3_1
5 sg:pub.10.1038/30918
6 sg:pub.10.1038/nature07053
7 sg:pub.10.1038/nature08932
8 sg:pub.10.1038/nphys2180
9 https://doi.org/10.1016/s0020-7519(97)00189-6
10 https://doi.org/10.1017/cbo9780511791383
11 https://doi.org/10.1073/pnas.1419185112
12 https://doi.org/10.1080/02786829808965531
13 https://doi.org/10.1103/physreve.60.7332
14 https://doi.org/10.1103/physreve.70.026114
15 https://doi.org/10.1103/physreve.73.056101
16 https://doi.org/10.1103/physrevlett.105.035701
17 https://doi.org/10.1103/physrevlett.105.048701
18 https://doi.org/10.1103/physrevlett.105.255701
19 https://doi.org/10.1103/physrevlett.106.225701
20 https://doi.org/10.1103/physrevlett.92.218701
21 https://doi.org/10.1111/imr.12063
22 https://doi.org/10.1126/science.1167053
23 https://doi.org/10.1126/science.1167782
24 https://doi.org/10.1126/science.1206241
25 https://doi.org/10.1126/science.286.5439.509
26 https://doi.org/10.1371/journal.pone.0016836
27 https://doi.org/10.1371/journal.ppat.1002464
28 https://doi.org/10.3201/eid1201.050979
29 https://doi.org/10.3201/eid1201.051442
30 https://doi.org/10.3201/eid1408.071313
31 https://doi.org/10.4324/9780203211595
32 schema:datePublished 2015-09-07
33 schema:datePublishedReg 2015-09-07
34 schema:description The spreading of contagions can exhibit a percolation transition, which separates transitory prevalence from outbreaks that reach a finite fraction of the population1,2. Such transitions are commonly believed to be continuous, but empirical studies have shown more violent spreading modes when the participating agents are not limited to one type. Striking examples include the co-epidemic of the Spanish flu and pneumonia that occurred in 1918 (refs 3, 4), and, more recently, the concurrent prevalence of HIV/AIDS and a host of diseases5,6,7. It remains unclear to what extent an outbreak in the presence of interacting pathogens differs from that due to an ordinary single-agent process. Here we study a mechanistic model for understanding contagion processes involving inter-agent cooperation. Our stochastic simulations reveal the possible emergence of a massive avalanche-like outbreak right at the threshold, which is manifested as a discontinuous phase transition. Such an abrupt change arises only if the underlying network topology supports a bottleneck for cascaded mutual infections. Surprisingly, all these discontinuous transitions are accompanied by non-trivial critical behaviours, presenting a rare case of hybrid transition8. The findings may imply the origin of catastrophic occurrences in many realistic systems, from co-epidemics to financial contagions9.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N9015fb5d62f6461b94486cc370a94751
39 N9cacee8af8f74ddb9a9a442408984214
40 sg:journal.1034717
41 schema:name Avalanche outbreaks emerging in cooperative contagions
42 schema:pagination 936
43 schema:productId N0e53a6c926894a909a9882db4d2c7fed
44 N23f628870c90425392e23d476502036c
45 Na25d6e1f17ee48698571eb912cc13161
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012670695
47 https://doi.org/10.1038/nphys3457
48 schema:sdDatePublished 2019-04-10T21:24
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Ne1b959171622436e829853a899fc4d2f
51 schema:url https://www.nature.com/articles/nphys3457
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0e53a6c926894a909a9882db4d2c7fed schema:name dimensions_id
56 schema:value pub.1012670695
57 rdf:type schema:PropertyValue
58 N23f628870c90425392e23d476502036c schema:name readcube_id
59 schema:value 3c5d232399fb8a794f616f35d5ed7b087a308dde61b2c6f6b3ddc4beaee9dd51
60 rdf:type schema:PropertyValue
61 N320c03aafac74353b6f4c1442ff80382 rdf:first sg:person.01141200702.36
62 rdf:rest N95f2329fa6d14d7783173537431705c0
63 N83f3dd2b64e64c749a42b08a67033392 rdf:first sg:person.011312215415.00
64 rdf:rest Nbf2e9bf40a1f4286adc957c13530571b
65 N9015fb5d62f6461b94486cc370a94751 schema:issueNumber 11
66 rdf:type schema:PublicationIssue
67 N95f2329fa6d14d7783173537431705c0 rdf:first sg:person.0704113004.84
68 rdf:rest rdf:nil
69 N9cacee8af8f74ddb9a9a442408984214 schema:volumeNumber 11
70 rdf:type schema:PublicationVolume
71 Na25d6e1f17ee48698571eb912cc13161 schema:name doi
72 schema:value 10.1038/nphys3457
73 rdf:type schema:PropertyValue
74 Nbf2e9bf40a1f4286adc957c13530571b rdf:first sg:person.016675512763.20
75 rdf:rest N320c03aafac74353b6f4c1442ff80382
76 Ne1b959171622436e829853a899fc4d2f schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
79 schema:name Medical and Health Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
82 schema:name Clinical Sciences
83 rdf:type schema:DefinedTerm
84 sg:journal.1034717 schema:issn 1745-2473
85 1745-2481
86 schema:name Nature Physics
87 rdf:type schema:Periodical
88 sg:person.011312215415.00 schema:affiliation https://www.grid.ac/institutes/grid.4488.0
89 schema:familyName Cai
90 schema:givenName Weiran
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011312215415.00
92 rdf:type schema:Person
93 sg:person.01141200702.36 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
94 schema:familyName Ghanbarnejad
95 schema:givenName Fakhteh
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141200702.36
97 rdf:type schema:Person
98 sg:person.016675512763.20 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
99 schema:familyName Chen
100 schema:givenName Li
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016675512763.20
102 rdf:type schema:Person
103 sg:person.0704113004.84 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
104 schema:familyName Grassberger
105 schema:givenName Peter
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84
107 rdf:type schema:Person
108 sg:pub.10.1007/978-1-4757-3314-3_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008266951
109 https://doi.org/10.1007/978-1-4757-3314-3_1
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
112 https://doi.org/10.1038/30918
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nature07053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029353566
115 https://doi.org/10.1038/nature07053
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nature08932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010370510
118 https://doi.org/10.1038/nature08932
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nphys2180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014594125
121 https://doi.org/10.1038/nphys2180
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0020-7519(97)00189-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010736686
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1017/cbo9780511791383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667199
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1073/pnas.1419185112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035824369
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1080/02786829808965531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019137071
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physreve.60.7332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038563506
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physreve.70.026114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043683964
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physreve.73.056101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026830761
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.105.035701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013267861
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.105.048701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013649274
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.105.255701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013445316
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.106.225701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014694094
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.92.218701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001140020
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1111/imr.12063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048671427
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1126/science.1167053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047740321
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1126/science.1167782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005403752
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1126/science.1206241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464729
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1371/journal.pone.0016836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043537891
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1371/journal.ppat.1002464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017169472
160 rdf:type schema:CreativeWork
161 https://doi.org/10.3201/eid1201.050979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047564794
162 rdf:type schema:CreativeWork
163 https://doi.org/10.3201/eid1201.051442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047012101
164 rdf:type schema:CreativeWork
165 https://doi.org/10.3201/eid1408.071313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013034776
166 rdf:type schema:CreativeWork
167 https://doi.org/10.4324/9780203211595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025360260
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
170 schema:name Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
171 Robert Koch Institute, 13353 Berlin, Germany
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.4488.0 schema:alternateName TU Dresden
174 schema:name Department of Electrical and Information Engineering, Technische Universität Dresden, 01069 Dresden, Germany
175 Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.8385.6 schema:alternateName Forschungszentrum Jülich
178 schema:name Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
179 Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...