Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-10

AUTHORS

Hans T. Nembach, Justin M. Shaw, Mathias Weiler, Emilie Jué, Thomas J. Silva

ABSTRACT

Proposals for novel spin-orbitronic logic1 and memory devices2 are often predicated on assumptions as to how materials with large spin–orbit coupling interact with ferromagnets when in contact. Such interactions give rise to a host of novel phenomena, such as spin–orbit torques3,4, chiral spin structures5,6 and chiral spin torques7,8. These chiral properties are related to the antisymmetric exchange, also referred to as the interfacial Dzyaloshinskii–Moriya interaction (DMI; refs 9, 10). For numerous phenomena, the relative strengths of the symmetric Heisenberg exchange and the DMI are of great importance. Here, we use optical spin-wave spectroscopy (Brillouin light scattering) to directly determine the volume-averaged DMI vector D for a series of Ni80Fe20/Pt thin films, and then compare the nearest-neighbour DMI coupling energy with an independently measured value of the Heisenberg exchange for each sample. We show that the dependence on Ni80Fe20 thickness of both the microscopic symmetric and antisymmetric exchange are nearly identical, consistent with the notion that the fundamentals of the DMI and Heisenberg exchange essentially share the same underlying physics, albeit with different symmetries, as was originally proposed by Moriya11 for superexchange in magnetic oxides, and by Fert and Levy12 for RKKY coupling in metallic spin glasses. Indeed, our result demonstrates the generality of the original DMI theory, insofar as the proportionality of the symmetric and antisymmetric exchange is robust with regard to the details of spin coupling for the material system in question. Although of significant fundamental importance, this result also leads us to a deeper understanding of DMI and how it could be optimized for spin-orbitronic applications. More... »

PAGES

825

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys3418

DOI

http://dx.doi.org/10.1038/nphys3418

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011251441


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Quantum Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nembach", 
        "givenName": "Hans T.", 
        "id": "sg:person.0634476131.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634476131.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Quantum Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaw", 
        "givenName": "Justin M.", 
        "id": "sg:person.010270123126.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010270123126.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Quantum Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiler", 
        "givenName": "Mathias", 
        "id": "sg:person.0675434463.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675434463.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Quantum Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ju\u00e9", 
        "givenName": "Emilie", 
        "id": "sg:person.01050553100.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050553100.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Quantum Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silva", 
        "givenName": "Thomas J.", 
        "id": "sg:person.01065153131.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065153131.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.4883181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001546186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/71/5/056501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004121254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008401895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(58)90076-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010776776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(58)90076-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010776776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep05248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014179332", 
          "https://doi.org/10.1038/srep05248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.216601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014227347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.216601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014227347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016002024", 
          "https://doi.org/10.1038/nphys2859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017044158", 
          "https://doi.org/10.1038/ncomms3671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.184404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018643894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.184404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018643894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/100/57002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018672975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020087497", 
          "https://doi.org/10.1038/nmat3020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021819555", 
          "https://doi.org/10.1038/nature05802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021879031", 
          "https://doi.org/10.1038/nature10309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025553648", 
          "https://doi.org/10.1038/nmat3675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/6/36/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030017385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.014428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030105714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.014428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030105714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032987081", 
          "https://doi.org/10.1038/nnano.2013.241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.207204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033611531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.207204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033611531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.214401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033939024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.214401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033939024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047913674", 
          "https://doi.org/10.1038/nnano.2013.102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/25/15/156001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052144012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060553939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060553939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.12417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060558790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.12417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060558790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.027201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.027201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.137203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.137203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.4.228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.4.228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.44.1538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.44.1538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1145799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.59-60.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072128979"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10", 
    "datePublishedReg": "2015-10-01", 
    "description": "Proposals for novel spin-orbitronic logic1 and memory devices2 are often predicated on assumptions as to how materials with large spin\u2013orbit coupling interact with ferromagnets when in contact. Such interactions give rise to a host of novel phenomena, such as spin\u2013orbit torques3,4, chiral spin structures5,6 and chiral spin torques7,8. These chiral properties are related to the antisymmetric exchange, also referred to as the interfacial Dzyaloshinskii\u2013Moriya interaction (DMI; refs 9, 10). For numerous phenomena, the relative strengths of the symmetric Heisenberg exchange and the DMI are of great importance. Here, we use optical spin-wave spectroscopy (Brillouin light scattering) to directly determine the volume-averaged DMI vector D for a series of Ni80Fe20/Pt thin films, and then compare the nearest-neighbour DMI coupling energy with an independently measured value of the Heisenberg exchange for each sample. We show that the dependence on Ni80Fe20 thickness of both the microscopic symmetric and antisymmetric exchange are nearly identical, consistent with the notion that the fundamentals of the DMI and Heisenberg exchange essentially share the same underlying physics, albeit with different symmetries, as was originally proposed by Moriya11 for superexchange in magnetic oxides, and by Fert and Levy12 for RKKY coupling in metallic spin glasses. Indeed, our result demonstrates the generality of the original DMI theory, insofar as the proportionality of the symmetric and antisymmetric exchange is robust with regard to the details of spin coupling for the material system in question. Although of significant fundamental importance, this result also leads us to a deeper understanding of DMI and how it could be optimized for spin-orbitronic applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys3418", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii\u2013Moriya interaction in metal films", 
    "pagination": "825", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "359b55e0f5829bdfbcc84694a2d70af15b6840dfa60a95822eecedec1a782dbd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys3418"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011251441"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys3418", 
      "https://app.dimensions.ai/details/publication/pub.1011251441"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys3418"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys3418'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys3418'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys3418'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys3418'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys3418 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N492912d599a54be4937df0c832c7b41f
4 schema:citation sg:pub.10.1038/nature05802
5 sg:pub.10.1038/nature10309
6 sg:pub.10.1038/ncomms3671
7 sg:pub.10.1038/nmat3020
8 sg:pub.10.1038/nmat3675
9 sg:pub.10.1038/nnano.2013.102
10 sg:pub.10.1038/nnano.2013.241
11 sg:pub.10.1038/nphys2859
12 sg:pub.10.1038/srep05248
13 https://doi.org/10.1016/0022-3697(58)90076-3
14 https://doi.org/10.1063/1.4883181
15 https://doi.org/10.1088/0034-4885/71/5/056501
16 https://doi.org/10.1088/0953-8984/25/15/156001
17 https://doi.org/10.1088/0953-8984/6/36/002
18 https://doi.org/10.1103/physrev.120.91
19 https://doi.org/10.1103/physrevb.41.530
20 https://doi.org/10.1103/physrevb.44.12417
21 https://doi.org/10.1103/physrevb.82.014428
22 https://doi.org/10.1103/physrevb.88.184404
23 https://doi.org/10.1103/physrevb.88.214401
24 https://doi.org/10.1103/physrevlett.101.027201
25 https://doi.org/10.1103/physrevlett.102.207204
26 https://doi.org/10.1103/physrevlett.104.137203
27 https://doi.org/10.1103/physrevlett.111.216601
28 https://doi.org/10.1103/physrevlett.4.228
29 https://doi.org/10.1103/physrevlett.44.1538
30 https://doi.org/10.1126/science.1145799
31 https://doi.org/10.1126/science.1166767
32 https://doi.org/10.1126/science.1218197
33 https://doi.org/10.1209/0295-5075/100/57002
34 https://doi.org/10.4028/www.scientific.net/msf.59-60.439
35 schema:datePublished 2015-10
36 schema:datePublishedReg 2015-10-01
37 schema:description Proposals for novel spin-orbitronic logic1 and memory devices2 are often predicated on assumptions as to how materials with large spin–orbit coupling interact with ferromagnets when in contact. Such interactions give rise to a host of novel phenomena, such as spin–orbit torques3,4, chiral spin structures5,6 and chiral spin torques7,8. These chiral properties are related to the antisymmetric exchange, also referred to as the interfacial Dzyaloshinskii–Moriya interaction (DMI; refs 9, 10). For numerous phenomena, the relative strengths of the symmetric Heisenberg exchange and the DMI are of great importance. Here, we use optical spin-wave spectroscopy (Brillouin light scattering) to directly determine the volume-averaged DMI vector D for a series of Ni80Fe20/Pt thin films, and then compare the nearest-neighbour DMI coupling energy with an independently measured value of the Heisenberg exchange for each sample. We show that the dependence on Ni80Fe20 thickness of both the microscopic symmetric and antisymmetric exchange are nearly identical, consistent with the notion that the fundamentals of the DMI and Heisenberg exchange essentially share the same underlying physics, albeit with different symmetries, as was originally proposed by Moriya11 for superexchange in magnetic oxides, and by Fert and Levy12 for RKKY coupling in metallic spin glasses. Indeed, our result demonstrates the generality of the original DMI theory, insofar as the proportionality of the symmetric and antisymmetric exchange is robust with regard to the details of spin coupling for the material system in question. Although of significant fundamental importance, this result also leads us to a deeper understanding of DMI and how it could be optimized for spin-orbitronic applications.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N7070319df79848d0baea6f97a7658abd
42 N9bd609f99f5a4e87a224fd21b9ecacfe
43 sg:journal.1034717
44 schema:name Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films
45 schema:pagination 825
46 schema:productId N2d8f47debba6451dae5479b7a3823c44
47 N584043ab3dfa4047bcbe0547ed0cc5c7
48 N9a42080687954c70a020b796c4faeafa
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011251441
50 https://doi.org/10.1038/nphys3418
51 schema:sdDatePublished 2019-04-10T19:45
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nb47b82142210418fa821d29e92e6f348
54 schema:url https://www.nature.com/articles/nphys3418
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0b069d6037ba497a966f706fd4f7e3ce rdf:first sg:person.01065153131.94
59 rdf:rest rdf:nil
60 N2d8f47debba6451dae5479b7a3823c44 schema:name dimensions_id
61 schema:value pub.1011251441
62 rdf:type schema:PropertyValue
63 N492912d599a54be4937df0c832c7b41f rdf:first sg:person.0634476131.35
64 rdf:rest Nbbd3cfa2601e46a08bd3ff74e759a475
65 N584043ab3dfa4047bcbe0547ed0cc5c7 schema:name readcube_id
66 schema:value 359b55e0f5829bdfbcc84694a2d70af15b6840dfa60a95822eecedec1a782dbd
67 rdf:type schema:PropertyValue
68 N7070319df79848d0baea6f97a7658abd schema:issueNumber 10
69 rdf:type schema:PublicationIssue
70 N9a42080687954c70a020b796c4faeafa schema:name doi
71 schema:value 10.1038/nphys3418
72 rdf:type schema:PropertyValue
73 N9bd609f99f5a4e87a224fd21b9ecacfe schema:volumeNumber 11
74 rdf:type schema:PublicationVolume
75 Nb47b82142210418fa821d29e92e6f348 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nb658b295e4d4494281fb390ad042b0eb rdf:first sg:person.01050553100.73
78 rdf:rest N0b069d6037ba497a966f706fd4f7e3ce
79 Nbbd3cfa2601e46a08bd3ff74e759a475 rdf:first sg:person.010270123126.60
80 rdf:rest Ncc6d0afbae9344d3ba93f57d35a0c8ac
81 Ncc6d0afbae9344d3ba93f57d35a0c8ac rdf:first sg:person.0675434463.38
82 rdf:rest Nb658b295e4d4494281fb390ad042b0eb
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
87 schema:name Materials Engineering
88 rdf:type schema:DefinedTerm
89 sg:journal.1034717 schema:issn 1745-2473
90 1745-2481
91 schema:name Nature Physics
92 rdf:type schema:Periodical
93 sg:person.010270123126.60 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
94 schema:familyName Shaw
95 schema:givenName Justin M.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010270123126.60
97 rdf:type schema:Person
98 sg:person.01050553100.73 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
99 schema:familyName Jué
100 schema:givenName Emilie
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050553100.73
102 rdf:type schema:Person
103 sg:person.01065153131.94 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
104 schema:familyName Silva
105 schema:givenName Thomas J.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065153131.94
107 rdf:type schema:Person
108 sg:person.0634476131.35 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
109 schema:familyName Nembach
110 schema:givenName Hans T.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634476131.35
112 rdf:type schema:Person
113 sg:person.0675434463.38 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
114 schema:familyName Weiler
115 schema:givenName Mathias
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675434463.38
117 rdf:type schema:Person
118 sg:pub.10.1038/nature05802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021819555
119 https://doi.org/10.1038/nature05802
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature10309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021879031
122 https://doi.org/10.1038/nature10309
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/ncomms3671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017044158
125 https://doi.org/10.1038/ncomms3671
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nmat3020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020087497
128 https://doi.org/10.1038/nmat3020
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nmat3675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025553648
131 https://doi.org/10.1038/nmat3675
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nnano.2013.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047913674
134 https://doi.org/10.1038/nnano.2013.102
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nnano.2013.241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032987081
137 https://doi.org/10.1038/nnano.2013.241
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nphys2859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016002024
140 https://doi.org/10.1038/nphys2859
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/srep05248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014179332
143 https://doi.org/10.1038/srep05248
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0022-3697(58)90076-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010776776
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.4883181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001546186
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1088/0034-4885/71/5/056501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004121254
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1088/0953-8984/25/15/156001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052144012
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1088/0953-8984/6/36/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030017385
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrev.120.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060423562
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.41.530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060553939
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.44.12417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060558790
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.82.014428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030105714
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevb.88.184404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018643894
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevb.88.214401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033939024
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.101.027201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753745
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.102.207204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033611531
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.104.137203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756788
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.111.216601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014227347
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.4.228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060782169
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.44.1538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060784831
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.1145799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456283
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1126/science.1218197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008401895
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1209/0295-5075/100/57002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018672975
186 rdf:type schema:CreativeWork
187 https://doi.org/10.4028/www.scientific.net/msf.59-60.439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072128979
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.94225.38 schema:alternateName National Institute of Standards and Technology
190 schema:name Quantum Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...