Liposome adhesion generates traction stress View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02

AUTHORS

Michael P. Murrell, Raphaël Voituriez, Jean-François Joanny, Pierre Nassoy, Cécile Sykes, Margaret L. Gardel

ABSTRACT

Mechanical forces generated by cells modulate global shape changes required for essential life processes, such as polarization, division and spreading. Although the contribution of the cytoskeleton to cellular force generation is widely recognized, the role of the membrane is considered to be restricted to passively transmitting forces. Therefore, the mechanisms by which the membrane can directly contribute to cell tension are overlooked and poorly understood. To address this, we directly measure the stresses generated during liposome adhesion. We find that liposome spreading generates large traction stresses on compliant substrates. These stresses can be understood as the equilibration of internal, hydrostatic pressures generated by the enhanced membrane tension built up during adhesion. These results underscore the role of membranes in the generation of mechanical stresses on cellular length scales and that the modulation of hydrostatic pressure due to membrane tension and adhesion can be channelled to perform mechanical work on the environment. More... »

PAGES

163-169

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys2855

DOI

http://dx.doi.org/10.1038/nphys2855

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043938374


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Institute for Biophysical Dynamics, James Franck Institute, University of Chicago, Chicago, Illinois I60637, USA", 
            "Institut Curie, Centre de Recherche, Laboratoire Physico-Chimie, UMR168, Paris F-75248, France", 
            "Centre National de la Recherche Scientifique, UMR168, Paris F-75248, France", 
            "Universit\u00e9 Paris 6, Paris F-75248, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murrell", 
        "givenName": "Michael P.", 
        "id": "sg:person.01016571404.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016571404.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Jean Perrin", 
          "id": "https://www.grid.ac/institutes/grid.464007.1", 
          "name": [
            "Laboratoire Jean Perrin, CNRS FRE 3231, and Laboratoire de Physique Th\u00e9orique de la Mati\u00e8re Condens\u00e9e, CNRS UMR 7600, Universit\u00e9 Pierre et Marie Curie, 4 place Jussieu, Paris F-75005, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voituriez", 
        "givenName": "Rapha\u00ebl", 
        "id": "sg:person.0776244441.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776244441.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Institut Curie, Centre de Recherche, Laboratoire Physico-Chimie, UMR168, Paris F-75248, France", 
            "Centre National de la Recherche Scientifique, UMR168, Paris F-75248, France", 
            "Universit\u00e9 Paris 6, Paris F-75248, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joanny", 
        "givenName": "Jean-Fran\u00e7ois", 
        "id": "sg:person.01314040302.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314040302.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Photonique, Num\u00e9rique et Nanosciences", 
          "id": "https://www.grid.ac/institutes/grid.462781.e", 
          "name": [
            "Institut Curie, Centre de Recherche, Laboratoire Physico-Chimie, UMR168, Paris F-75248, France", 
            "Centre National de la Recherche Scientifique, UMR168, Paris F-75248, France", 
            "Universit\u00e9 Paris 6, Paris F-75248, France", 
            "Institut d\u2019Optique, LP2N, UMR 5298, Talence F-33405, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nassoy", 
        "givenName": "Pierre", 
        "id": "sg:person.0672050461.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672050461.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Institut Curie, Centre de Recherche, Laboratoire Physico-Chimie, UMR168, Paris F-75248, France", 
            "Centre National de la Recherche Scientifique, UMR168, Paris F-75248, France", 
            "Universit\u00e9 Paris 6, Paris F-75248, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sykes", 
        "givenName": "C\u00e9cile", 
        "id": "sg:person.01241320153.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241320153.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago", 
          "id": "https://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "Institute for Biophysical Dynamics, James Franck Institute, University of Chicago, Chicago, Illinois I60637, USA", 
            "The Department of Physics, University of Chicago, Chicago, Illinois I60637, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gardel", 
        "givenName": "Margaret L.", 
        "id": "sg:person.01224543273.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224543273.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0006-3495(97)78065-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002102216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268949108035656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002661061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2sm25540e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002779929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2012.11.3805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003245109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.19.10591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007161693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008136420", 
          "https://doi.org/10.1038/nmat2512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008136420", 
          "https://doi.org/10.1038/nmat2512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.104.041475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010177518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2010.07.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011844494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.248103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012989087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.248103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012989087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejcb.2010.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014285900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.144.3.497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018006426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1010481108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023051579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(03)74697-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023365549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(00)76294-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024051454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jcs.093716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024247726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(03)74658-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032367701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cm.20041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034662091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.112221299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036308664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-9822(06)00262-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041438868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0702511104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042343985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.107.105544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043030462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2011.10.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045952749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2011.10.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045952749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2011.01.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046030522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12195-010-0102-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046548073", 
          "https://doi.org/10.1007/s12195-010-0102-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12195-010-0102-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046548073", 
          "https://doi.org/10.1007/s12195-010-0102-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1102358108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047158906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijms14012203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047322751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0904565106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047345991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.107.113670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049357832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cm.10037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050521163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1105845108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051135241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.201107042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052050424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la00057a009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056139768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la991341x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056171825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la991341x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056171825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.42.4768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060482249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.42.4768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060482249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.6340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060723062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.6340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060723062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.228101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.228101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/84/48003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064232292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.18-17-06681.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083308466"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "Mechanical forces generated by cells modulate global shape changes required for essential life processes, such as polarization, division and spreading. Although the contribution of the cytoskeleton to cellular force generation is widely recognized, the role of the membrane is considered to be restricted to passively transmitting forces. Therefore, the mechanisms by which the membrane can directly contribute to cell tension are overlooked and poorly understood. To address this, we directly measure the stresses generated during liposome adhesion. We find that liposome spreading generates large traction stresses on compliant substrates. These stresses can be understood as the equilibration of internal, hydrostatic pressures generated by the enhanced membrane tension built up during adhesion. These results underscore the role of membranes in the generation of mechanical stresses on cellular length scales and that the modulation of hydrostatic pressure due to membrane tension and adhesion can be channelled to perform mechanical work on the environment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys2855", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3095425", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Liposome adhesion generates traction stress", 
    "pagination": "163-169", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d14b7424a8aa110fa749d7ca5ff679e605108cd8c268e126f23dace35da1bc94"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys2855"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043938374"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys2855", 
      "https://app.dimensions.ai/details/publication/pub.1043938374"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nphys2855"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys2855'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys2855'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys2855'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys2855'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys2855 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N15c2e2a988dc4ac9b9e8d93bc1b6e181
4 schema:citation sg:pub.10.1007/s12195-010-0102-6
5 sg:pub.10.1038/nmat2512
6 https://doi.org/10.1002/cm.10037
7 https://doi.org/10.1002/cm.20041
8 https://doi.org/10.1016/j.bpj.2010.07.031
9 https://doi.org/10.1016/j.bpj.2011.01.038
10 https://doi.org/10.1016/j.bpj.2012.11.3805
11 https://doi.org/10.1016/j.cell.2011.10.050
12 https://doi.org/10.1016/j.ejcb.2010.09.013
13 https://doi.org/10.1016/s0006-3495(00)76294-1
14 https://doi.org/10.1016/s0006-3495(03)74658-x
15 https://doi.org/10.1016/s0006-3495(03)74697-9
16 https://doi.org/10.1016/s0006-3495(97)78065-2
17 https://doi.org/10.1016/s0960-9822(06)00262-4
18 https://doi.org/10.1021/la00057a009
19 https://doi.org/10.1021/la991341x
20 https://doi.org/10.1039/c2sm25540e
21 https://doi.org/10.1073/pnas.0702511104
22 https://doi.org/10.1073/pnas.0904565106
23 https://doi.org/10.1073/pnas.1010481108
24 https://doi.org/10.1073/pnas.1102358108
25 https://doi.org/10.1073/pnas.1105845108
26 https://doi.org/10.1073/pnas.112221299
27 https://doi.org/10.1073/pnas.96.19.10591
28 https://doi.org/10.1080/00268949108035656
29 https://doi.org/10.1083/jcb.144.3.497
30 https://doi.org/10.1083/jcb.201107042
31 https://doi.org/10.1103/physreva.42.4768
32 https://doi.org/10.1103/physreve.58.6340
33 https://doi.org/10.1103/physrevlett.105.248103
34 https://doi.org/10.1103/physrevlett.93.228101
35 https://doi.org/10.1209/0295-5075/84/48003
36 https://doi.org/10.1242/jcs.093716
37 https://doi.org/10.1523/jneurosci.18-17-06681.1998
38 https://doi.org/10.1529/biophysj.104.041475
39 https://doi.org/10.1529/biophysj.107.105544
40 https://doi.org/10.1529/biophysj.107.113670
41 https://doi.org/10.3390/ijms14012203
42 schema:datePublished 2014-02
43 schema:datePublishedReg 2014-02-01
44 schema:description Mechanical forces generated by cells modulate global shape changes required for essential life processes, such as polarization, division and spreading. Although the contribution of the cytoskeleton to cellular force generation is widely recognized, the role of the membrane is considered to be restricted to passively transmitting forces. Therefore, the mechanisms by which the membrane can directly contribute to cell tension are overlooked and poorly understood. To address this, we directly measure the stresses generated during liposome adhesion. We find that liposome spreading generates large traction stresses on compliant substrates. These stresses can be understood as the equilibration of internal, hydrostatic pressures generated by the enhanced membrane tension built up during adhesion. These results underscore the role of membranes in the generation of mechanical stresses on cellular length scales and that the modulation of hydrostatic pressure due to membrane tension and adhesion can be channelled to perform mechanical work on the environment.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N12cca07be4ef40419e62c2800476f5b0
49 Ne0653f924ea44a459a9fa070e13279af
50 sg:journal.1034717
51 schema:name Liposome adhesion generates traction stress
52 schema:pagination 163-169
53 schema:productId N37dbd697fe3f4ceeb464f78977fdc560
54 N65182b5c87164fbbab9899b0d06c4cf2
55 N9b573567386543eda565e0c751cd9943
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043938374
57 https://doi.org/10.1038/nphys2855
58 schema:sdDatePublished 2019-04-11T00:04
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nb10029523f324b62906bb1d39f79cbbe
61 schema:url http://www.nature.com/articles/nphys2855
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N0fc30381487b40339590f8c8ad6dbd41 rdf:first sg:person.01241320153.70
66 rdf:rest Nae4461468626474c82cbf812d21d9f6d
67 N12cca07be4ef40419e62c2800476f5b0 schema:issueNumber 2
68 rdf:type schema:PublicationIssue
69 N153030d5aba9496f8de161b152a37dba rdf:first sg:person.0776244441.13
70 rdf:rest N4e7fc5e6008949dba943d561c6070182
71 N15c2e2a988dc4ac9b9e8d93bc1b6e181 rdf:first sg:person.01016571404.17
72 rdf:rest N153030d5aba9496f8de161b152a37dba
73 N37dbd697fe3f4ceeb464f78977fdc560 schema:name doi
74 schema:value 10.1038/nphys2855
75 rdf:type schema:PropertyValue
76 N4e7fc5e6008949dba943d561c6070182 rdf:first sg:person.01314040302.05
77 rdf:rest Ndf01fdf15d9249208a51f9e673b20305
78 N65182b5c87164fbbab9899b0d06c4cf2 schema:name readcube_id
79 schema:value d14b7424a8aa110fa749d7ca5ff679e605108cd8c268e126f23dace35da1bc94
80 rdf:type schema:PropertyValue
81 N9b573567386543eda565e0c751cd9943 schema:name dimensions_id
82 schema:value pub.1043938374
83 rdf:type schema:PropertyValue
84 Nae4461468626474c82cbf812d21d9f6d rdf:first sg:person.01224543273.08
85 rdf:rest rdf:nil
86 Nb10029523f324b62906bb1d39f79cbbe schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Ndf01fdf15d9249208a51f9e673b20305 rdf:first sg:person.0672050461.38
89 rdf:rest N0fc30381487b40339590f8c8ad6dbd41
90 Ne0653f924ea44a459a9fa070e13279af schema:volumeNumber 10
91 rdf:type schema:PublicationVolume
92 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
93 schema:name Biological Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
96 schema:name Biochemistry and Cell Biology
97 rdf:type schema:DefinedTerm
98 sg:grant.3095425 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys2855
99 rdf:type schema:MonetaryGrant
100 sg:journal.1034717 schema:issn 1745-2473
101 1745-2481
102 schema:name Nature Physics
103 rdf:type schema:Periodical
104 sg:person.01016571404.17 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
105 schema:familyName Murrell
106 schema:givenName Michael P.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016571404.17
108 rdf:type schema:Person
109 sg:person.01224543273.08 schema:affiliation https://www.grid.ac/institutes/grid.170205.1
110 schema:familyName Gardel
111 schema:givenName Margaret L.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224543273.08
113 rdf:type schema:Person
114 sg:person.01241320153.70 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
115 schema:familyName Sykes
116 schema:givenName Cécile
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241320153.70
118 rdf:type schema:Person
119 sg:person.01314040302.05 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
120 schema:familyName Joanny
121 schema:givenName Jean-François
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314040302.05
123 rdf:type schema:Person
124 sg:person.0672050461.38 schema:affiliation https://www.grid.ac/institutes/grid.462781.e
125 schema:familyName Nassoy
126 schema:givenName Pierre
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672050461.38
128 rdf:type schema:Person
129 sg:person.0776244441.13 schema:affiliation https://www.grid.ac/institutes/grid.464007.1
130 schema:familyName Voituriez
131 schema:givenName Raphaël
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776244441.13
133 rdf:type schema:Person
134 sg:pub.10.1007/s12195-010-0102-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046548073
135 https://doi.org/10.1007/s12195-010-0102-6
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nmat2512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008136420
138 https://doi.org/10.1038/nmat2512
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/cm.10037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050521163
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/cm.20041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034662091
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.bpj.2010.07.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011844494
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.bpj.2011.01.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046030522
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.bpj.2012.11.3805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003245109
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.cell.2011.10.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045952749
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ejcb.2010.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014285900
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0006-3495(00)76294-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024051454
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0006-3495(03)74658-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032367701
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0006-3495(03)74697-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023365549
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0006-3495(97)78065-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002102216
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0960-9822(06)00262-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041438868
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/la00057a009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056139768
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/la991341x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056171825
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1039/c2sm25540e schema:sameAs https://app.dimensions.ai/details/publication/pub.1002779929
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1073/pnas.0702511104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042343985
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1073/pnas.0904565106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047345991
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1073/pnas.1010481108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023051579
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1073/pnas.1102358108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047158906
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1073/pnas.1105845108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051135241
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1073/pnas.112221299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036308664
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1073/pnas.96.19.10591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007161693
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1080/00268949108035656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002661061
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1083/jcb.144.3.497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018006426
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1083/jcb.201107042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052050424
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physreva.42.4768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060482249
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physreve.58.6340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060723062
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.105.248103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012989087
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.93.228101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829449
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1209/0295-5075/84/48003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064232292
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1242/jcs.093716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024247726
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1523/jneurosci.18-17-06681.1998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083308466
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1529/biophysj.104.041475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010177518
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1529/biophysj.107.105544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043030462
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1529/biophysj.107.113670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049357832
209 rdf:type schema:CreativeWork
210 https://doi.org/10.3390/ijms14012203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047322751
211 rdf:type schema:CreativeWork
212 https://www.grid.ac/institutes/grid.170205.1 schema:alternateName University of Chicago
213 schema:name Institute for Biophysical Dynamics, James Franck Institute, University of Chicago, Chicago, Illinois I60637, USA
214 The Department of Physics, University of Chicago, Chicago, Illinois I60637, USA
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.462781.e schema:alternateName Laboratoire Photonique, Numérique et Nanosciences
217 schema:name Centre National de la Recherche Scientifique, UMR168, Paris F-75248, France
218 Institut Curie, Centre de Recherche, Laboratoire Physico-Chimie, UMR168, Paris F-75248, France
219 Institut d’Optique, LP2N, UMR 5298, Talence F-33405, France
220 Université Paris 6, Paris F-75248, France
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.462844.8 schema:alternateName Sorbonne University
223 schema:name Centre National de la Recherche Scientifique, UMR168, Paris F-75248, France
224 Institut Curie, Centre de Recherche, Laboratoire Physico-Chimie, UMR168, Paris F-75248, France
225 Institute for Biophysical Dynamics, James Franck Institute, University of Chicago, Chicago, Illinois I60637, USA
226 Université Paris 6, Paris F-75248, France
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.464007.1 schema:alternateName Laboratoire Jean Perrin
229 schema:name Laboratoire Jean Perrin, CNRS FRE 3231, and Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre et Marie Curie, 4 place Jussieu, Paris F-75005, France
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...