Real-space tailoring of the electron–phonon coupling in ultraclean nanotube mechanical resonators View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-01-12

AUTHORS

A. Benyamini, A. Hamo, S. Viola Kusminskiy, F. von Oppen, S. Ilani

ABSTRACT

The coupling between electrons and phonons is at the heart of many fundamental phenomena in nature. Despite tremendous advances in controlling electrons or phonons in engineered nanosystems, control over their coupling is still widely lacking. Here we demonstrate the ability to fully tailor electron–phonon interactions using a new class of suspended carbon nanotube devices, in which we can form highly tunable single and double quantum dots at arbitrary locations along a nanotube mechanical resonator. We find that electron–phonon coupling can be turned on and off by controlling the position of a quantum dot along the resonator. Using double quantum dots we structure the interactions in real space to couple specific electronic and phononic modes. This tailored coupling allows measurement of the phonons’ spatial parity and imaging of their mode shapes. Finally, we demonstrate coupling between phonons and internal electrons in an isolated system, decoupled from the random environment of the electronic leads, a crucial step towards fully engineered quantum-coherent electron–phonon systems. More... »

PAGES

151-156

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys2842

DOI

http://dx.doi.org/10.1038/nphys2842

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001585437


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benyamini", 
        "givenName": "A.", 
        "id": "sg:person.01027766740.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027766740.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamo", 
        "givenName": "A.", 
        "id": "sg:person.0735077053.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735077053.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universit\u00e4t Berlin, 14195 Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.14095.39", 
          "name": [
            "Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universit\u00e4t Berlin, 14195 Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kusminskiy", 
        "givenName": "S. Viola", 
        "id": "sg:person.01304663373.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304663373.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universit\u00e4t Berlin, 14195 Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.14095.39", 
          "name": [
            "Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universit\u00e4t Berlin, 14195 Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "von Oppen", 
        "givenName": "F.", 
        "id": "sg:person.01366036711.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366036711.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ilani", 
        "givenName": "S.", 
        "id": "sg:person.01004454574.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004454574.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature10261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016300003", 
          "https://doi.org/10.1038/nature10261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021756441", 
          "https://doi.org/10.1038/nature08093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045153976", 
          "https://doi.org/10.1038/nphys2070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002962233", 
          "https://doi.org/10.1038/nature06822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022178384", 
          "https://doi.org/10.1038/nmat1478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016917600", 
          "https://doi.org/10.1038/nature08967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007947612", 
          "https://doi.org/10.1038/nature11559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018758750", 
          "https://doi.org/10.1038/nnano.2013.143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021562901", 
          "https://doi.org/10.1038/nphys1234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048590003", 
          "https://doi.org/10.1038/nnano.2009.71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022350020", 
          "https://doi.org/10.1038/nature02905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043487683", 
          "https://doi.org/10.1038/nnano.2012.160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002882424", 
          "https://doi.org/10.1038/nature10461"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-01-12", 
    "datePublishedReg": "2014-01-12", 
    "description": "The coupling between electrons and phonons is at the heart of many fundamental phenomena in nature. Despite tremendous advances in controlling electrons or phonons in engineered nanosystems, control over their coupling is still widely lacking. Here we demonstrate the ability to fully tailor electron\u2013phonon interactions using a new class of suspended carbon nanotube devices, in which we can form highly tunable single and double quantum dots at arbitrary locations along a nanotube mechanical resonator. We find that electron\u2013phonon coupling can be turned on and off by controlling the position of a quantum dot along the resonator. Using double quantum dots we structure the interactions in real space to couple specific electronic and phononic modes. This tailored coupling allows measurement of the phonons\u2019 spatial parity and imaging of their mode shapes. Finally, we demonstrate coupling between phonons and internal electrons in an isolated system, decoupled from the random environment of the electronic leads, a crucial step towards fully engineered quantum-coherent electron\u2013phonon systems.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nphys2842", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3784076", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "double quantum dot", 
      "electron-phonon coupling", 
      "nanotube mechanical resonator", 
      "quantum dots", 
      "spatial parity", 
      "mechanical resonator", 
      "carbon nanotube devices", 
      "electron-phonon interaction", 
      "electron-phonon system", 
      "nanotube devices", 
      "phononic modes", 
      "internal electron", 
      "real space", 
      "electronic leads", 
      "electrons", 
      "phonons", 
      "fundamental phenomena", 
      "resonator", 
      "dots", 
      "coupling", 
      "isolated system", 
      "nanosystems", 
      "new class", 
      "tremendous advances", 
      "devices", 
      "tailoring", 
      "interaction", 
      "arbitrary locations", 
      "measurements", 
      "crucial step", 
      "mode", 
      "imaging", 
      "phenomenon", 
      "system", 
      "advances", 
      "parity", 
      "shape", 
      "space", 
      "random environment", 
      "position", 
      "nature", 
      "step", 
      "environment", 
      "ability", 
      "lead", 
      "mode shapes", 
      "class", 
      "location", 
      "heart"
    ], 
    "name": "Real-space tailoring of the electron\u2013phonon coupling in ultraclean nanotube mechanical resonators", 
    "pagination": "151-156", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001585437"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys2842"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys2842", 
      "https://app.dimensions.ai/details/publication/pub.1001585437"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_624.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nphys2842"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys2842'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys2842'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys2842'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys2842'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      86 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys2842 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N0275833b8a5f44ca83b30427e72caf20
4 schema:citation sg:pub.10.1038/nature02905
5 sg:pub.10.1038/nature06822
6 sg:pub.10.1038/nature08093
7 sg:pub.10.1038/nature08967
8 sg:pub.10.1038/nature10261
9 sg:pub.10.1038/nature10461
10 sg:pub.10.1038/nature11559
11 sg:pub.10.1038/nmat1478
12 sg:pub.10.1038/nnano.2009.71
13 sg:pub.10.1038/nnano.2012.160
14 sg:pub.10.1038/nnano.2013.143
15 sg:pub.10.1038/nphys1234
16 sg:pub.10.1038/nphys2070
17 schema:datePublished 2014-01-12
18 schema:datePublishedReg 2014-01-12
19 schema:description The coupling between electrons and phonons is at the heart of many fundamental phenomena in nature. Despite tremendous advances in controlling electrons or phonons in engineered nanosystems, control over their coupling is still widely lacking. Here we demonstrate the ability to fully tailor electron–phonon interactions using a new class of suspended carbon nanotube devices, in which we can form highly tunable single and double quantum dots at arbitrary locations along a nanotube mechanical resonator. We find that electron–phonon coupling can be turned on and off by controlling the position of a quantum dot along the resonator. Using double quantum dots we structure the interactions in real space to couple specific electronic and phononic modes. This tailored coupling allows measurement of the phonons’ spatial parity and imaging of their mode shapes. Finally, we demonstrate coupling between phonons and internal electrons in an isolated system, decoupled from the random environment of the electronic leads, a crucial step towards fully engineered quantum-coherent electron–phonon systems.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N3c34fa4af1b047388f2af60cb29fcaf7
23 Nc43922f7f24648218f8334f9113381e7
24 sg:journal.1034717
25 schema:keywords ability
26 advances
27 arbitrary locations
28 carbon nanotube devices
29 class
30 coupling
31 crucial step
32 devices
33 dots
34 double quantum dot
35 electron-phonon coupling
36 electron-phonon interaction
37 electron-phonon system
38 electronic leads
39 electrons
40 environment
41 fundamental phenomena
42 heart
43 imaging
44 interaction
45 internal electron
46 isolated system
47 lead
48 location
49 measurements
50 mechanical resonator
51 mode
52 mode shapes
53 nanosystems
54 nanotube devices
55 nanotube mechanical resonator
56 nature
57 new class
58 parity
59 phenomenon
60 phononic modes
61 phonons
62 position
63 quantum dots
64 random environment
65 real space
66 resonator
67 shape
68 space
69 spatial parity
70 step
71 system
72 tailoring
73 tremendous advances
74 schema:name Real-space tailoring of the electron–phonon coupling in ultraclean nanotube mechanical resonators
75 schema:pagination 151-156
76 schema:productId N859982922b844a2e90abc995700d5327
77 N931ed8d13faa446b84e498d2709c29a6
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001585437
79 https://doi.org/10.1038/nphys2842
80 schema:sdDatePublished 2022-11-24T20:58
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N3c23d8efc8bd44ee869bf51289cdb583
83 schema:url https://doi.org/10.1038/nphys2842
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N0275833b8a5f44ca83b30427e72caf20 rdf:first sg:person.01027766740.74
88 rdf:rest Na6369186f4a24b2e8b375005a76e15d9
89 N3c23d8efc8bd44ee869bf51289cdb583 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N3c34fa4af1b047388f2af60cb29fcaf7 schema:issueNumber 2
92 rdf:type schema:PublicationIssue
93 N4fbf4a069f824095b8f2967f3bb56d60 rdf:first sg:person.01004454574.17
94 rdf:rest rdf:nil
95 N6020ec4188b04a5da75d26d019cc4c9d rdf:first sg:person.01304663373.31
96 rdf:rest Ne45966efb171471aa013c2dc39e79762
97 N859982922b844a2e90abc995700d5327 schema:name doi
98 schema:value 10.1038/nphys2842
99 rdf:type schema:PropertyValue
100 N931ed8d13faa446b84e498d2709c29a6 schema:name dimensions_id
101 schema:value pub.1001585437
102 rdf:type schema:PropertyValue
103 Na6369186f4a24b2e8b375005a76e15d9 rdf:first sg:person.0735077053.78
104 rdf:rest N6020ec4188b04a5da75d26d019cc4c9d
105 Nc43922f7f24648218f8334f9113381e7 schema:volumeNumber 10
106 rdf:type schema:PublicationVolume
107 Ne45966efb171471aa013c2dc39e79762 rdf:first sg:person.01366036711.96
108 rdf:rest N4fbf4a069f824095b8f2967f3bb56d60
109 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
110 schema:name Physical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
113 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
114 rdf:type schema:DefinedTerm
115 sg:grant.3784076 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys2842
116 rdf:type schema:MonetaryGrant
117 sg:journal.1034717 schema:issn 1745-2473
118 1745-2481
119 schema:name Nature Physics
120 schema:publisher Springer Nature
121 rdf:type schema:Periodical
122 sg:person.01004454574.17 schema:affiliation grid-institutes:grid.13992.30
123 schema:familyName Ilani
124 schema:givenName S.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004454574.17
126 rdf:type schema:Person
127 sg:person.01027766740.74 schema:affiliation grid-institutes:grid.13992.30
128 schema:familyName Benyamini
129 schema:givenName A.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027766740.74
131 rdf:type schema:Person
132 sg:person.01304663373.31 schema:affiliation grid-institutes:grid.14095.39
133 schema:familyName Kusminskiy
134 schema:givenName S. Viola
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304663373.31
136 rdf:type schema:Person
137 sg:person.01366036711.96 schema:affiliation grid-institutes:grid.14095.39
138 schema:familyName von Oppen
139 schema:givenName F.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366036711.96
141 rdf:type schema:Person
142 sg:person.0735077053.78 schema:affiliation grid-institutes:grid.13992.30
143 schema:familyName Hamo
144 schema:givenName A.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735077053.78
146 rdf:type schema:Person
147 sg:pub.10.1038/nature02905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022350020
148 https://doi.org/10.1038/nature02905
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature06822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002962233
151 https://doi.org/10.1038/nature06822
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nature08093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021756441
154 https://doi.org/10.1038/nature08093
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nature08967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016917600
157 https://doi.org/10.1038/nature08967
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nature10261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016300003
160 https://doi.org/10.1038/nature10261
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature10461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002882424
163 https://doi.org/10.1038/nature10461
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nature11559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007947612
166 https://doi.org/10.1038/nature11559
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nmat1478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022178384
169 https://doi.org/10.1038/nmat1478
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nnano.2009.71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048590003
172 https://doi.org/10.1038/nnano.2009.71
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nnano.2012.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043487683
175 https://doi.org/10.1038/nnano.2012.160
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nnano.2013.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018758750
178 https://doi.org/10.1038/nnano.2013.143
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nphys1234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021562901
181 https://doi.org/10.1038/nphys1234
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nphys2070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045153976
184 https://doi.org/10.1038/nphys2070
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.13992.30 schema:alternateName Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
187 schema:name Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
188 rdf:type schema:Organization
189 grid-institutes:grid.14095.39 schema:alternateName Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
190 schema:name Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...