Universal quantum oscillations in the underdoped cuprate superconductors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Neven Barišić, Sven Badoux, Mun K. Chan, Chelsey Dorow, Wojciech Tabis, Baptiste Vignolle, Guichuan Yu, Jérôme Béard, Xudong Zhao, Cyril Proust, Martin Greven

ABSTRACT

The metallic state of the underdoped high- Tc cuprates has remained an enigma: how may seemingly disconnected Fermi-surface segments, observed in zero magnetic field as a result of the opening of a partial gap (the pseudogap), possess conventional quasiparticle properties1,2,3? How do the small Fermi-surface pockets evidenced by the observation of quantum oscillations emerge as superconductivity is suppressed in high magnetic fields4,5,6,7,8,9,10,11? Such quantum oscillations, discovered in underdoped YBa2Cu3O6.5 (Y123; ref. 12) and YBa2Cu4O8 (Y124; ref. 13), signify the existence of a conventional Fermi surface3,14,15. However, owing to the complexity of the crystal structures of Y123 and Y124 (CuO2 double layers, CuO chains, low structural symmetry), it has remained unclear whether the quantum oscillations are specific to this particular family of cuprates5,16,17,18. Numerous theoretical proposals have been put forward to explain the source of quantum oscillations, including materials-specific scenarios involving CuO chains and scenarios involving the quintessential CuO2 planes6,11,18. Here we report the observation of quantum oscillations in underdoped HgBa2CuO4+δ (Hg1201), a model cuprate superconductor with individual CuO2 layers, high tetragonal symmetry and no CuO chains. This observation proves that quantum oscillations are a universal property of the underdoped CuO2 planes, and it opens the door to quantitative future studies of the metallic state and of the Fermi-surface reconstruction phenomenon in this structurally simplest cuprate. More... »

PAGES

761-764

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys2792

DOI

http://dx.doi.org/10.1038/nphys2792

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046956116


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.454227.2", 
          "name": [
            "Service de Physique de l\u2019Etat Condens\u00e9, CEA-DSM-IRAMIS, F 91198 Gif-sur-Yvette, France", 
            "School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA", 
            "Institute of Physics, HR\u201310000 Zagreb, Croatia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bari\u0161i\u0107", 
        "givenName": "Neven", 
        "id": "sg:person.01152334075.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152334075.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National High Magnetic Field Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462694.b", 
          "name": [
            "Laboratoire National des Champs Magn\u00e9tiques Intenses, UPR 3228, (CNRS-INSA-UJF-UPS), Toulouse 31400, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Badoux", 
        "givenName": "Sven", 
        "id": "sg:person.01227447722.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227447722.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chan", 
        "givenName": "Mun K.", 
        "id": "sg:person.01036105475.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036105475.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dorow", 
        "givenName": "Chelsey", 
        "id": "sg:person.01211361404.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211361404.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tabis", 
        "givenName": "Wojciech", 
        "id": "sg:person.01201224244.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201224244.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National High Magnetic Field Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462694.b", 
          "name": [
            "Laboratoire National des Champs Magn\u00e9tiques Intenses, UPR 3228, (CNRS-INSA-UJF-UPS), Toulouse 31400, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vignolle", 
        "givenName": "Baptiste", 
        "id": "sg:person.01327204657.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327204657.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Guichuan", 
        "id": "sg:person.01342410471.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342410471.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National High Magnetic Field Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462694.b", 
          "name": [
            "Laboratoire National des Champs Magn\u00e9tiques Intenses, UPR 3228, (CNRS-INSA-UJF-UPS), Toulouse 31400, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e9ard", 
        "givenName": "J\u00e9r\u00f4me", 
        "id": "sg:person.01052506133.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052506133.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA", 
            "State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xudong", 
        "id": "sg:person.01100321014.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100321014.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National High Magnetic Field Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462694.b", 
          "name": [
            "Laboratoire National des Champs Magn\u00e9tiques Intenses, UPR 3228, (CNRS-INSA-UJF-UPS), Toulouse 31400, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Proust", 
        "givenName": "Cyril", 
        "id": "sg:person.01205726457.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205726457.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greven", 
        "givenName": "Martin", 
        "id": "sg:person.01017063515.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017063515.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.100.047003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001304863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.047003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001304863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002153810", 
          "https://doi.org/10.1038/nphys2641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.245116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005970374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.245116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005970374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006521670", 
          "https://doi.org/10.1038/nature05872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.3.021019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006713141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.3.021019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006713141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.100502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007630053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.100502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007630053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008842996", 
          "https://doi.org/10.1038/nature07323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1301989110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011169970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0804002105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018417352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.064527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018863748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.064527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018863748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/75/10/102501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021405357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024565372", 
          "https://doi.org/10.1038/nphys1921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200600931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024698486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1218846110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025382131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.060504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026853810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.060504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026853810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.012507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028811841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.012507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028811841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034537878", 
          "https://doi.org/10.1038/nphys2380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035778153", 
          "https://doi.org/10.1038/nature10345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035863876", 
          "https://doi.org/10.1038/nphys2502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035987954", 
          "https://doi.org/10.1038/nature07251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.027202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036962102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.027202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036962102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crhy.2012.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037021022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038208136", 
          "https://doi.org/10.1038/ncomms2667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.140508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039041264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.140508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039041264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.054518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041534304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.054518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041534304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.064512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042061368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.064512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042061368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.077001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046968023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.077001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046968023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.041104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049944122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.041104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049944122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.46.1296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.46.1296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1223532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062466776"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "The metallic state of the underdoped high- Tc cuprates has remained an enigma: how may seemingly disconnected Fermi-surface segments, observed in zero magnetic field as a result of the opening of a partial gap (the pseudogap), possess conventional quasiparticle properties1,2,3? How do the small Fermi-surface pockets evidenced by the observation of quantum oscillations emerge as superconductivity is suppressed in high magnetic fields4,5,6,7,8,9,10,11? Such quantum oscillations, discovered in underdoped YBa2Cu3O6.5 (Y123; ref. 12) and YBa2Cu4O8 (Y124; ref. 13), signify the existence of a conventional Fermi surface3,14,15. However, owing to the complexity of the crystal structures of Y123 and Y124 (CuO2 double layers, CuO chains, low structural symmetry), it has remained unclear whether the quantum oscillations are specific to this particular family of cuprates5,16,17,18. Numerous theoretical proposals have been put forward to explain the source of quantum oscillations, including materials-specific scenarios involving CuO chains and scenarios involving the quintessential CuO2 planes6,11,18. Here we report the observation of quantum oscillations in underdoped HgBa2CuO4+\u03b4 (Hg1201), a model cuprate superconductor with individual CuO2 layers, high tetragonal symmetry and no CuO chains. This observation proves that quantum oscillations are a universal property of the underdoped CuO2 planes, and it opens the door to quantitative future studies of the metallic state and of the Fermi-surface reconstruction phenomenon in this structurally simplest cuprate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys2792", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Universal quantum oscillations in the underdoped cuprate superconductors", 
    "pagination": "761-764", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dfaeadb6cf506ade13c5197b00ba5d4dfed2f0e2afa214b1a549bb1fecc3881d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys2792"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046956116"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys2792", 
      "https://app.dimensions.ai/details/publication/pub.1046956116"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nphys2792"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys2792'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys2792'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys2792'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys2792'


 

This table displays all metadata directly associated to this object as RDF triples.

242 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys2792 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N76395aeda08c406f9e90a46517cc427d
4 schema:citation sg:pub.10.1038/nature05872
5 sg:pub.10.1038/nature07251
6 sg:pub.10.1038/nature07323
7 sg:pub.10.1038/nature10345
8 sg:pub.10.1038/ncomms2667
9 sg:pub.10.1038/nphys1921
10 sg:pub.10.1038/nphys2380
11 sg:pub.10.1038/nphys2502
12 sg:pub.10.1038/nphys2641
13 https://doi.org/10.1002/adma.200600931
14 https://doi.org/10.1016/j.crhy.2012.11.001
15 https://doi.org/10.1073/pnas.0804002105
16 https://doi.org/10.1073/pnas.1218846110
17 https://doi.org/10.1073/pnas.1301989110
18 https://doi.org/10.1088/0034-4885/75/10/102501
19 https://doi.org/10.1103/physrevb.68.100502
20 https://doi.org/10.1103/physrevb.69.064512
21 https://doi.org/10.1103/physrevb.76.140508
22 https://doi.org/10.1103/physrevb.77.060504
23 https://doi.org/10.1103/physrevb.78.054518
24 https://doi.org/10.1103/physrevb.79.245116
25 https://doi.org/10.1103/physrevb.84.012507
26 https://doi.org/10.1103/physrevb.86.064527
27 https://doi.org/10.1103/physrevb.88.041104
28 https://doi.org/10.1103/physrevlett.100.047003
29 https://doi.org/10.1103/physrevlett.111.027202
30 https://doi.org/10.1103/physrevlett.46.1296
31 https://doi.org/10.1103/physrevlett.95.077001
32 https://doi.org/10.1103/physrevx.3.021019
33 https://doi.org/10.1126/science.1223532
34 schema:datePublished 2013-12
35 schema:datePublishedReg 2013-12-01
36 schema:description The metallic state of the underdoped high- Tc cuprates has remained an enigma: how may seemingly disconnected Fermi-surface segments, observed in zero magnetic field as a result of the opening of a partial gap (the pseudogap), possess conventional quasiparticle properties1,2,3? How do the small Fermi-surface pockets evidenced by the observation of quantum oscillations emerge as superconductivity is suppressed in high magnetic fields4,5,6,7,8,9,10,11? Such quantum oscillations, discovered in underdoped YBa2Cu3O6.5 (Y123; ref. 12) and YBa2Cu4O8 (Y124; ref. 13), signify the existence of a conventional Fermi surface3,14,15. However, owing to the complexity of the crystal structures of Y123 and Y124 (CuO2 double layers, CuO chains, low structural symmetry), it has remained unclear whether the quantum oscillations are specific to this particular family of cuprates5,16,17,18. Numerous theoretical proposals have been put forward to explain the source of quantum oscillations, including materials-specific scenarios involving CuO chains and scenarios involving the quintessential CuO2 planes6,11,18. Here we report the observation of quantum oscillations in underdoped HgBa2CuO4+δ (Hg1201), a model cuprate superconductor with individual CuO2 layers, high tetragonal symmetry and no CuO chains. This observation proves that quantum oscillations are a universal property of the underdoped CuO2 planes, and it opens the door to quantitative future studies of the metallic state and of the Fermi-surface reconstruction phenomenon in this structurally simplest cuprate.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N042b65795c5d43fab030d6e812a0b9cf
41 N5f90f8d94f5246c9a14b7f6e1eaf9ff7
42 sg:journal.1034717
43 schema:name Universal quantum oscillations in the underdoped cuprate superconductors
44 schema:pagination 761-764
45 schema:productId Nb74a273c72534e4b86e11f2648ef06be
46 Nc1286286d1be4db99682620772ca9547
47 Nccb5a71ebabc4d248c31212e73b10f66
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046956116
49 https://doi.org/10.1038/nphys2792
50 schema:sdDatePublished 2019-04-10T13:56
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N3ceb39dc349044e69a33c0d1cf62c178
53 schema:url http://www.nature.com/articles/nphys2792
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N007dd972aad74cde8a72cabf4cd6daa7 rdf:first sg:person.01227447722.17
58 rdf:rest Ne9d7a7de65ca4e58beb46d28952663cc
59 N042b65795c5d43fab030d6e812a0b9cf schema:volumeNumber 9
60 rdf:type schema:PublicationVolume
61 N12300a2c8ea24012a7bc2586345396aa rdf:first sg:person.01211361404.36
62 rdf:rest N30a3f082e16c4658bd32a1d7365d3f47
63 N126cc7bbdf6b40f9a2f152eb19a9fa6c rdf:first sg:person.01052506133.72
64 rdf:rest N61b13aa76d9e4fc0abb9d99b17ec90d3
65 N30a3f082e16c4658bd32a1d7365d3f47 rdf:first sg:person.01201224244.65
66 rdf:rest Nfd71dd1f4fe449e5b2047e03e8897428
67 N39f3692f1fae4b6d97d1687c6fbedc2c rdf:first sg:person.01017063515.24
68 rdf:rest rdf:nil
69 N3ceb39dc349044e69a33c0d1cf62c178 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N5f90f8d94f5246c9a14b7f6e1eaf9ff7 schema:issueNumber 12
72 rdf:type schema:PublicationIssue
73 N61b13aa76d9e4fc0abb9d99b17ec90d3 rdf:first sg:person.01100321014.52
74 rdf:rest Nabd2a0a3dd9149efb4e98f605c78f94b
75 N76395aeda08c406f9e90a46517cc427d rdf:first sg:person.01152334075.24
76 rdf:rest N007dd972aad74cde8a72cabf4cd6daa7
77 N9f33d04141134dfa95096afe6a874c81 rdf:first sg:person.01342410471.43
78 rdf:rest N126cc7bbdf6b40f9a2f152eb19a9fa6c
79 Nabd2a0a3dd9149efb4e98f605c78f94b rdf:first sg:person.01205726457.21
80 rdf:rest N39f3692f1fae4b6d97d1687c6fbedc2c
81 Nb74a273c72534e4b86e11f2648ef06be schema:name dimensions_id
82 schema:value pub.1046956116
83 rdf:type schema:PropertyValue
84 Nc1286286d1be4db99682620772ca9547 schema:name readcube_id
85 schema:value dfaeadb6cf506ade13c5197b00ba5d4dfed2f0e2afa214b1a549bb1fecc3881d
86 rdf:type schema:PropertyValue
87 Nccb5a71ebabc4d248c31212e73b10f66 schema:name doi
88 schema:value 10.1038/nphys2792
89 rdf:type schema:PropertyValue
90 Ne9d7a7de65ca4e58beb46d28952663cc rdf:first sg:person.01036105475.52
91 rdf:rest N12300a2c8ea24012a7bc2586345396aa
92 Nfd71dd1f4fe449e5b2047e03e8897428 rdf:first sg:person.01327204657.50
93 rdf:rest N9f33d04141134dfa95096afe6a874c81
94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
98 schema:name Quantum Physics
99 rdf:type schema:DefinedTerm
100 sg:journal.1034717 schema:issn 1745-2473
101 1745-2481
102 schema:name Nature Physics
103 rdf:type schema:Periodical
104 sg:person.01017063515.24 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
105 schema:familyName Greven
106 schema:givenName Martin
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017063515.24
108 rdf:type schema:Person
109 sg:person.01036105475.52 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
110 schema:familyName Chan
111 schema:givenName Mun K.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036105475.52
113 rdf:type schema:Person
114 sg:person.01052506133.72 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
115 schema:familyName Béard
116 schema:givenName Jérôme
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052506133.72
118 rdf:type schema:Person
119 sg:person.01100321014.52 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
120 schema:familyName Zhao
121 schema:givenName Xudong
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100321014.52
123 rdf:type schema:Person
124 sg:person.01152334075.24 schema:affiliation https://www.grid.ac/institutes/grid.454227.2
125 schema:familyName Barišić
126 schema:givenName Neven
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152334075.24
128 rdf:type schema:Person
129 sg:person.01201224244.65 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
130 schema:familyName Tabis
131 schema:givenName Wojciech
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201224244.65
133 rdf:type schema:Person
134 sg:person.01205726457.21 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
135 schema:familyName Proust
136 schema:givenName Cyril
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205726457.21
138 rdf:type schema:Person
139 sg:person.01211361404.36 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
140 schema:familyName Dorow
141 schema:givenName Chelsey
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211361404.36
143 rdf:type schema:Person
144 sg:person.01227447722.17 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
145 schema:familyName Badoux
146 schema:givenName Sven
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227447722.17
148 rdf:type schema:Person
149 sg:person.01327204657.50 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
150 schema:familyName Vignolle
151 schema:givenName Baptiste
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327204657.50
153 rdf:type schema:Person
154 sg:person.01342410471.43 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
155 schema:familyName Yu
156 schema:givenName Guichuan
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342410471.43
158 rdf:type schema:Person
159 sg:pub.10.1038/nature05872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006521670
160 https://doi.org/10.1038/nature05872
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature07251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035987954
163 https://doi.org/10.1038/nature07251
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nature07323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008842996
166 https://doi.org/10.1038/nature07323
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nature10345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035778153
169 https://doi.org/10.1038/nature10345
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/ncomms2667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038208136
172 https://doi.org/10.1038/ncomms2667
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nphys1921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024565372
175 https://doi.org/10.1038/nphys1921
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nphys2380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034537878
178 https://doi.org/10.1038/nphys2380
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nphys2502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035863876
181 https://doi.org/10.1038/nphys2502
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nphys2641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002153810
184 https://doi.org/10.1038/nphys2641
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/adma.200600931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024698486
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.crhy.2012.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037021022
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1073/pnas.0804002105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018417352
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1073/pnas.1218846110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025382131
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1073/pnas.1301989110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011169970
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1088/0034-4885/75/10/102501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021405357
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevb.68.100502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007630053
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevb.69.064512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042061368
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevb.76.140508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039041264
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevb.77.060504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026853810
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevb.78.054518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041534304
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevb.79.245116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005970374
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevb.84.012507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028811841
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevb.86.064527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018863748
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevb.88.041104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049944122
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevlett.100.047003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001304863
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevlett.111.027202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036962102
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.46.1296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060785949
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.95.077001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046968023
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevx.3.021019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006713141
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.1223532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466776
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.17635.36 schema:alternateName University of Minnesota
229 schema:name School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.454227.2 schema:alternateName Institute of Physics
232 schema:name Institute of Physics, HR–10000 Zagreb, Croatia
233 School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
234 Service de Physique de l’Etat Condensé, CEA-DSM-IRAMIS, F 91198 Gif-sur-Yvette, France
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.462694.b schema:alternateName French National High Magnetic Field Laboratory
237 schema:name Laboratoire National des Champs Magnétiques Intenses, UPR 3228, (CNRS-INSA-UJF-UPS), Toulouse 31400, France
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.64924.3d schema:alternateName Jilin University
240 schema:name School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
241 State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
242 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...