Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-10

AUTHORS

F. K. Dejene, J. Flipse, G. E. W. Bauer, B. J. van Wees

ABSTRACT

Since the discovery of the giant magnetoresistance effect1,2 the intrinsic angular momentum of the electron has opened up new spin-based device concepts. Our present understanding of the coupled transport of charge, spin and heat relies on the two-channel model for spin-up and spin-down electrons having equal temperatures. Here we report the observation of different (effective) temperatures for the spin-up and spin-down electrons in a nanopillar spin valve subject to a heat current. By three-dimensional finite element modelling3 of our devices for varying thickness of the non-magnetic layer, spin heat accumulations (the difference of the spin temperatures) of 120 mK and 350 mK are extracted at room temperature and 77 K, respectively, which is of the order of 10% of the total temperature bias over the nanopillar. This technique uniquely allows the study of inelastic spin scattering at low energies and elevated temperatures, which is not possible by spectroscopic methods. More... »

PAGES

636-639

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys2743

DOI

http://dx.doi.org/10.1038/nphys2743

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033045025


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Zernike Institute for Advanced Materials, Physics of Nanodevices, University of Groningen, 9747 AG Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dejene", 
        "givenName": "F. K.", 
        "id": "sg:person.01310740207.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310740207.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Zernike Institute for Advanced Materials, Physics of Nanodevices, University of Groningen, 9747 AG Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flipse", 
        "givenName": "J.", 
        "id": "sg:person.01276255245.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276255245.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, The Netherlands", 
            "Institute for Materials Research and WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "G. E. W.", 
        "id": "sg:person.013610611427.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013610611427.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Zernike Institute for Advanced Materials, Physics of Nanodevices, University of Groningen, 9747 AG Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Wees", 
        "givenName": "B. J.", 
        "id": "sg:person.01247476432.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247476432.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/andp.18531650802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000070364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001689763", 
          "https://doi.org/10.1038/nphys1767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.177201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002638046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.177201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002638046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004813700", 
          "https://doi.org/10.1038/nmat2860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004813700", 
          "https://doi.org/10.1038/nmat2860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35066533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006965625", 
          "https://doi.org/10.1038/35066533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35066533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006965625", 
          "https://doi.org/10.1038/35066533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/19/18/183201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008114194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/19/18/183201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008114194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008175488", 
          "https://doi.org/10.1038/ncomms1748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008851460", 
          "https://doi.org/10.1038/nmat2856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008851460", 
          "https://doi.org/10.1038/nmat2856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018153553", 
          "https://doi.org/10.1038/nmat3301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssc.2010.01.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024022686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024943075", 
          "https://doi.org/10.1038/nnano.2012.2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.174408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028651356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.174408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028651356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.066603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031084855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.066603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031084855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034212094", 
          "https://doi.org/10.1038/nature10224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035306494", 
          "https://doi.org/10.1038/nmat3076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.4828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036933778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.4828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036933778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.024436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038459122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.024436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038459122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(93)90640-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044016097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(93)90640-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044016097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssr.201105401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045949682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047234331", 
          "https://doi.org/10.1038/nature07321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.132405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052005603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.132405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052005603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052840638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052840638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.052410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.052410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.100408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.100408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.140407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.140407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.134406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.134406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.037206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.037206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.175503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.175503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2012.2201709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061684899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.62.431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063114148"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-10", 
    "datePublishedReg": "2013-10-01", 
    "description": "Since the discovery of the giant magnetoresistance effect1,2 the intrinsic angular momentum of the electron has opened up new spin-based device concepts. Our present understanding of the coupled transport of charge, spin and heat relies on the two-channel model for spin-up and spin-down electrons having equal temperatures. Here we report the observation of different (effective) temperatures for the spin-up and spin-down electrons in a nanopillar spin valve subject to a heat current. By three-dimensional finite element modelling3 of our devices for varying thickness of the non-magnetic layer, spin heat accumulations (the difference of the spin temperatures) of 120 mK and 350 mK are extracted at room temperature and 77 K, respectively, which is of the order of 10% of the total temperature bias over the nanopillar. This technique uniquely allows the study of inelastic spin scattering at low energies and elevated temperatures, which is not possible by spectroscopic methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys2743", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3790372", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6110577", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves", 
    "pagination": "636-639", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9d6bf2d56dd8ac5e2bb9af52b2386731baba66d900f096f3b9b88fafee397954"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys2743"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033045025"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys2743", 
      "https://app.dimensions.ai/details/publication/pub.1033045025"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nphys2743"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys2743'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys2743'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys2743'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys2743'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys2743 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nec7957c94be9413e99c1408c7116681d
4 schema:citation sg:pub.10.1038/35066533
5 sg:pub.10.1038/nature07321
6 sg:pub.10.1038/nature10224
7 sg:pub.10.1038/ncomms1748
8 sg:pub.10.1038/nmat2856
9 sg:pub.10.1038/nmat2860
10 sg:pub.10.1038/nmat3076
11 sg:pub.10.1038/nmat3301
12 sg:pub.10.1038/nnano.2012.2
13 sg:pub.10.1038/nphys1767
14 https://doi.org/10.1002/andp.18531650802
15 https://doi.org/10.1002/pssr.201105401
16 https://doi.org/10.1016/0304-8853(93)90640-n
17 https://doi.org/10.1016/j.ssc.2010.01.022
18 https://doi.org/10.1088/0953-8984/19/18/183201
19 https://doi.org/10.1103/physrevb.39.4828
20 https://doi.org/10.1103/physrevb.73.052410
21 https://doi.org/10.1103/physrevb.81.100408
22 https://doi.org/10.1103/physrevb.81.140407
23 https://doi.org/10.1103/physrevb.83.132405
24 https://doi.org/10.1103/physrevb.84.174408
25 https://doi.org/10.1103/physrevb.86.024436
26 https://doi.org/10.1103/physrevb.87.134406
27 https://doi.org/10.1103/physrevlett.107.177201
28 https://doi.org/10.1103/physrevlett.109.037206
29 https://doi.org/10.1103/physrevlett.109.175503
30 https://doi.org/10.1103/physrevlett.61.2472
31 https://doi.org/10.1103/physrevlett.99.066603
32 https://doi.org/10.1109/tmag.2012.2201709
33 https://doi.org/10.1143/jpsj.62.431
34 schema:datePublished 2013-10
35 schema:datePublishedReg 2013-10-01
36 schema:description Since the discovery of the giant magnetoresistance effect1,2 the intrinsic angular momentum of the electron has opened up new spin-based device concepts. Our present understanding of the coupled transport of charge, spin and heat relies on the two-channel model for spin-up and spin-down electrons having equal temperatures. Here we report the observation of different (effective) temperatures for the spin-up and spin-down electrons in a nanopillar spin valve subject to a heat current. By three-dimensional finite element modelling3 of our devices for varying thickness of the non-magnetic layer, spin heat accumulations (the difference of the spin temperatures) of 120 mK and 350 mK are extracted at room temperature and 77 K, respectively, which is of the order of 10% of the total temperature bias over the nanopillar. This technique uniquely allows the study of inelastic spin scattering at low energies and elevated temperatures, which is not possible by spectroscopic methods.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N525511070e314b57a30ab72d7f23542b
41 N553dd22706274d5a82e3c9a4ebefffa1
42 sg:journal.1034717
43 schema:name Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves
44 schema:pagination 636-639
45 schema:productId N3c208f2699c049a789a2e481a9e03c2c
46 N574519e7840d4438bab7f86609f45f31
47 N7f1bab75a4434e2f953da04247765037
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033045025
49 https://doi.org/10.1038/nphys2743
50 schema:sdDatePublished 2019-04-10T16:29
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N5ffde3c6c2a348fb9b98a7d05c9f2502
53 schema:url http://www.nature.com/articles/nphys2743
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N3c208f2699c049a789a2e481a9e03c2c schema:name readcube_id
58 schema:value 9d6bf2d56dd8ac5e2bb9af52b2386731baba66d900f096f3b9b88fafee397954
59 rdf:type schema:PropertyValue
60 N3cc5425e2b3d410b95c6578a8254d7ae rdf:first sg:person.01276255245.35
61 rdf:rest Nc9c1ffb4613a487dbb076971eacd4b5e
62 N525511070e314b57a30ab72d7f23542b schema:issueNumber 10
63 rdf:type schema:PublicationIssue
64 N553dd22706274d5a82e3c9a4ebefffa1 schema:volumeNumber 9
65 rdf:type schema:PublicationVolume
66 N574519e7840d4438bab7f86609f45f31 schema:name dimensions_id
67 schema:value pub.1033045025
68 rdf:type schema:PropertyValue
69 N5ffde3c6c2a348fb9b98a7d05c9f2502 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N7f1bab75a4434e2f953da04247765037 schema:name doi
72 schema:value 10.1038/nphys2743
73 rdf:type schema:PropertyValue
74 Nc9c1ffb4613a487dbb076971eacd4b5e rdf:first sg:person.013610611427.65
75 rdf:rest Neb766a84b0aa4cf483f8b8e8f0368ace
76 Neb766a84b0aa4cf483f8b8e8f0368ace rdf:first sg:person.01247476432.53
77 rdf:rest rdf:nil
78 Nec7957c94be9413e99c1408c7116681d rdf:first sg:person.01310740207.02
79 rdf:rest N3cc5425e2b3d410b95c6578a8254d7ae
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
84 schema:name Materials Engineering
85 rdf:type schema:DefinedTerm
86 sg:grant.3790372 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys2743
87 rdf:type schema:MonetaryGrant
88 sg:grant.6110577 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys2743
89 rdf:type schema:MonetaryGrant
90 sg:journal.1034717 schema:issn 1745-2473
91 1745-2481
92 schema:name Nature Physics
93 rdf:type schema:Periodical
94 sg:person.01247476432.53 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
95 schema:familyName van Wees
96 schema:givenName B. J.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247476432.53
98 rdf:type schema:Person
99 sg:person.01276255245.35 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
100 schema:familyName Flipse
101 schema:givenName J.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276255245.35
103 rdf:type schema:Person
104 sg:person.01310740207.02 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
105 schema:familyName Dejene
106 schema:givenName F. K.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310740207.02
108 rdf:type schema:Person
109 sg:person.013610611427.65 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
110 schema:familyName Bauer
111 schema:givenName G. E. W.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013610611427.65
113 rdf:type schema:Person
114 sg:pub.10.1038/35066533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006965625
115 https://doi.org/10.1038/35066533
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nature07321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047234331
118 https://doi.org/10.1038/nature07321
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nature10224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034212094
121 https://doi.org/10.1038/nature10224
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/ncomms1748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008175488
124 https://doi.org/10.1038/ncomms1748
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nmat2856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008851460
127 https://doi.org/10.1038/nmat2856
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nmat2860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004813700
130 https://doi.org/10.1038/nmat2860
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nmat3076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035306494
133 https://doi.org/10.1038/nmat3076
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nmat3301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018153553
136 https://doi.org/10.1038/nmat3301
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nnano.2012.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024943075
139 https://doi.org/10.1038/nnano.2012.2
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nphys1767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001689763
142 https://doi.org/10.1038/nphys1767
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/andp.18531650802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000070364
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/pssr.201105401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045949682
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0304-8853(93)90640-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1044016097
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ssc.2010.01.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024022686
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1088/0953-8984/19/18/183201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008114194
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevb.39.4828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036933778
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevb.73.052410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060616477
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevb.81.100408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060631926
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevb.81.140407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060632246
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevb.83.132405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052005603
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevb.84.174408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028651356
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevb.86.024436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038459122
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevb.87.134406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641187
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.107.177201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002638046
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.109.037206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760092
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.109.175503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760489
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.61.2472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052840638
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.99.066603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031084855
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/tmag.2012.2201709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061684899
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1143/jpsj.62.431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063114148
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
185 schema:name Zernike Institute for Advanced Materials, Physics of Nanodevices, University of Groningen, 9747 AG Groningen, The Netherlands
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
188 schema:name Institute for Materials Research and WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
189 Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, The Netherlands
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...