A cold-atom random laser View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-06

AUTHORS

Q. Baudouin, N. Mercadier, V. Guarrera, W. Guerin, R. Kaiser

ABSTRACT

In conventional lasers optical cavities are used to provide feedback to gain media. Mirrorless lasers can be built by using disordered structures to induce multiple scattering, which increases the path length in the medium, providing the necessary feedback1. Interestingly, light or microwave amplification by stimulated emission also occurs naturally in stellar gases2,3,4 and planetary atmospheres5,6. The possibility of additional scattering-induced feedback4,7—random lasing8,9,10,11,12,13,14—could explain the unusual properties of some space masers15. Here, we report experimental evidence of random lasing in a controlled, cold atomic vapour, taking advantage of Raman gain. By tuning the gain frequency in the vicinity of a scattering resonance, we observe an enhancement of the light emission due to random lasing. The unique possibility to both control the experimental parameters and to model the microscopic response of our system provides an ideal test bench for better understanding natural lasing sources, in particular the role of resonant scattering feedback in astrophysical lasers. More... »

PAGES

357

References to SciGraph publications

Journal

TITLE

Nature Physics

ISSUE

6

VOLUME

9

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nphys2614

    DOI

    http://dx.doi.org/10.1038/nphys2614

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042782622


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut de Physique de Nice", 
              "id": "https://www.grid.ac/institutes/grid.497397.7", 
              "name": [
                "Institut Non Lin\u00e9aire de Nice, CNRS, Universit\u00e9 de Nice Sophia-Antipolis, 1361 route des Lucioles, 06560 Valbonne, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baudouin", 
            "givenName": "Q.", 
            "id": "sg:person.014250405311.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014250405311.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut de Physique de Nice", 
              "id": "https://www.grid.ac/institutes/grid.497397.7", 
              "name": [
                "Institut Non Lin\u00e9aire de Nice, CNRS, Universit\u00e9 de Nice Sophia-Antipolis, 1361 route des Lucioles, 06560 Valbonne, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mercadier", 
            "givenName": "N.", 
            "id": "sg:person.01115357714.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115357714.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut de Physique de Nice", 
              "id": "https://www.grid.ac/institutes/grid.497397.7", 
              "name": [
                "Institut Non Lin\u00e9aire de Nice, CNRS, Universit\u00e9 de Nice Sophia-Antipolis, 1361 route des Lucioles, 06560 Valbonne, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guarrera", 
            "givenName": "V.", 
            "id": "sg:person.011547775532.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011547775532.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut de Physique de Nice", 
              "id": "https://www.grid.ac/institutes/grid.497397.7", 
              "name": [
                "Institut Non Lin\u00e9aire de Nice, CNRS, Universit\u00e9 de Nice Sophia-Antipolis, 1361 route des Lucioles, 06560 Valbonne, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guerin", 
            "givenName": "W.", 
            "id": "sg:person.01223040123.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223040123.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut de Physique de Nice", 
              "id": "https://www.grid.ac/institutes/grid.497397.7", 
              "name": [
                "Institut Non Lin\u00e9aire de Nice, CNRS, Universit\u00e9 de Nice Sophia-Antipolis, 1361 route des Lucioles, 06560 Valbonne, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaiser", 
            "givenName": "R.", 
            "id": "sg:person.01017474211.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017474211.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphys971", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000774313", 
              "https://doi.org/10.1038/nphys971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2011.320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002327096", 
              "https://doi.org/10.1038/nphoton.2011.320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/368436a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005347288", 
              "https://doi.org/10.1038/368436a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006581981", 
              "https://doi.org/10.1038/nphys1035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.87.013412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009660434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.87.013412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009660434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.173903", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017766144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.173903", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017766144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2013.29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021086028", 
              "https://doi.org/10.1038/nphoton.2013.29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/208029a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021910447", 
              "https://doi.org/10.1038/208029a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01974", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022559465", 
              "https://doi.org/10.1038/nature01974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01974", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022559465", 
              "https://doi.org/10.1038/nature01974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.093002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027438680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.093002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027438680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028680404", 
              "https://doi.org/10.1038/nature10920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/96/34005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029506675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.optcom.2004.10.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030415049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/414708a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034186011", 
              "https://doi.org/10.1038/414708a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/414708a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034186011", 
              "https://doi.org/10.1038/414708a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/2040-8978/12/2/024002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052432994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/2040-8978/12/2/024002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052432994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/qe1986v016n02abeh005792", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058180672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/182252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058511763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/2040-8986/12/2/020201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059181360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.063904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060758615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.063904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060758615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.2278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060819120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.2278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060819120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.223904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060827578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.223904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060827578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jqe.1972.1077234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061300492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1155311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062457559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.212.4490.45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062522849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.17.011236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065190728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.17.011236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065190728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/acprof:oso/9780199548279.001.0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098773768"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-06", 
        "datePublishedReg": "2013-06-01", 
        "description": "In conventional lasers optical cavities are used to provide feedback to gain media. Mirrorless lasers can be built by using disordered structures to induce multiple scattering, which increases the path length in the medium, providing the necessary feedback1. Interestingly, light or microwave amplification by stimulated emission also occurs naturally in stellar gases2,3,4 and planetary atmospheres5,6. The possibility of additional scattering-induced feedback4,7\u2014random lasing8,9,10,11,12,13,14\u2014could explain the unusual properties of some space masers15. Here, we report experimental evidence of random lasing in a controlled, cold atomic vapour, taking advantage of Raman gain. By tuning the gain frequency in the vicinity of a scattering resonance, we observe an enhancement of the light emission due to random lasing. The unique possibility to both control the experimental parameters and to model the microscopic response of our system provides an ideal test bench for better understanding natural lasing sources, in particular the role of resonant scattering feedback in astrophysical lasers.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nphys2614", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4527874", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1034717", 
            "issn": [
              "1745-2473", 
              "1745-2481"
            ], 
            "name": "Nature Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "A cold-atom random laser", 
        "pagination": "357", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "cbcac6fea9b8152e25c405e99f75c4801b9dc5425fe941d404a78197a348ef36"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nphys2614"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042782622"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nphys2614", 
          "https://app.dimensions.ai/details/publication/pub.1042782622"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000436.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nphys2614"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys2614'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys2614'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys2614'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys2614'


     

    This table displays all metadata directly associated to this object as RDF triples.

    178 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nphys2614 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N3ed74d9f937a47b094dfac10e6127493
    4 schema:citation sg:pub.10.1038/208029a0
    5 sg:pub.10.1038/368436a0
    6 sg:pub.10.1038/414708a
    7 sg:pub.10.1038/nature01974
    8 sg:pub.10.1038/nature10920
    9 sg:pub.10.1038/nphoton.2011.320
    10 sg:pub.10.1038/nphoton.2013.29
    11 sg:pub.10.1038/nphys1035
    12 sg:pub.10.1038/nphys971
    13 https://doi.org/10.1016/j.optcom.2004.10.037
    14 https://doi.org/10.1070/qe1986v016n02abeh005792
    15 https://doi.org/10.1086/182252
    16 https://doi.org/10.1088/2040-8978/12/2/024002
    17 https://doi.org/10.1088/2040-8986/12/2/020201
    18 https://doi.org/10.1093/acprof:oso/9780199548279.001.0001
    19 https://doi.org/10.1103/physreva.87.013412
    20 https://doi.org/10.1103/physrevlett.101.093002
    21 https://doi.org/10.1103/physrevlett.102.173903
    22 https://doi.org/10.1103/physrevlett.107.063904
    23 https://doi.org/10.1103/physrevlett.82.2278
    24 https://doi.org/10.1103/physrevlett.91.223904
    25 https://doi.org/10.1109/jqe.1972.1077234
    26 https://doi.org/10.1126/science.1155311
    27 https://doi.org/10.1126/science.212.4490.45
    28 https://doi.org/10.1209/0295-5075/96/34005
    29 https://doi.org/10.1364/oe.17.011236
    30 schema:datePublished 2013-06
    31 schema:datePublishedReg 2013-06-01
    32 schema:description In conventional lasers optical cavities are used to provide feedback to gain media. Mirrorless lasers can be built by using disordered structures to induce multiple scattering, which increases the path length in the medium, providing the necessary feedback1. Interestingly, light or microwave amplification by stimulated emission also occurs naturally in stellar gases2,3,4 and planetary atmospheres5,6. The possibility of additional scattering-induced feedback4,7—random lasing8,9,10,11,12,13,14—could explain the unusual properties of some space masers15. Here, we report experimental evidence of random lasing in a controlled, cold atomic vapour, taking advantage of Raman gain. By tuning the gain frequency in the vicinity of a scattering resonance, we observe an enhancement of the light emission due to random lasing. The unique possibility to both control the experimental parameters and to model the microscopic response of our system provides an ideal test bench for better understanding natural lasing sources, in particular the role of resonant scattering feedback in astrophysical lasers.
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N91d29150005c4f6fa8c78caf0b7d65be
    37 Nc69458eb0ba3402babc3a70334d90be2
    38 sg:journal.1034717
    39 schema:name A cold-atom random laser
    40 schema:pagination 357
    41 schema:productId N0ba2008f5464430ebce35c9eae469c36
    42 N3176ee479b53499a9c706079e62e91eb
    43 Nf547f0e53ca045b79bbadc56011d0a5c
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042782622
    45 https://doi.org/10.1038/nphys2614
    46 schema:sdDatePublished 2019-04-10T21:26
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher N529c3dd138a44526b518aed82b068369
    49 schema:url https://www.nature.com/articles/nphys2614
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N0ba2008f5464430ebce35c9eae469c36 schema:name doi
    54 schema:value 10.1038/nphys2614
    55 rdf:type schema:PropertyValue
    56 N12d36cbbc2154cb4953b7d468412b259 rdf:first sg:person.01115357714.31
    57 rdf:rest N29be1109ea8640aba2613b6b57566b27
    58 N1b38598e32d44851b3892a0a2220af17 rdf:first sg:person.01223040123.05
    59 rdf:rest N482608288dd74f4e970f3997ada239b6
    60 N29be1109ea8640aba2613b6b57566b27 rdf:first sg:person.011547775532.57
    61 rdf:rest N1b38598e32d44851b3892a0a2220af17
    62 N3176ee479b53499a9c706079e62e91eb schema:name readcube_id
    63 schema:value cbcac6fea9b8152e25c405e99f75c4801b9dc5425fe941d404a78197a348ef36
    64 rdf:type schema:PropertyValue
    65 N3ed74d9f937a47b094dfac10e6127493 rdf:first sg:person.014250405311.41
    66 rdf:rest N12d36cbbc2154cb4953b7d468412b259
    67 N482608288dd74f4e970f3997ada239b6 rdf:first sg:person.01017474211.35
    68 rdf:rest rdf:nil
    69 N529c3dd138a44526b518aed82b068369 schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 N91d29150005c4f6fa8c78caf0b7d65be schema:issueNumber 6
    72 rdf:type schema:PublicationIssue
    73 Nc69458eb0ba3402babc3a70334d90be2 schema:volumeNumber 9
    74 rdf:type schema:PublicationVolume
    75 Nf547f0e53ca045b79bbadc56011d0a5c schema:name dimensions_id
    76 schema:value pub.1042782622
    77 rdf:type schema:PropertyValue
    78 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Physical Sciences
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Other Physical Sciences
    83 rdf:type schema:DefinedTerm
    84 sg:grant.4527874 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys2614
    85 rdf:type schema:MonetaryGrant
    86 sg:journal.1034717 schema:issn 1745-2473
    87 1745-2481
    88 schema:name Nature Physics
    89 rdf:type schema:Periodical
    90 sg:person.01017474211.35 schema:affiliation https://www.grid.ac/institutes/grid.497397.7
    91 schema:familyName Kaiser
    92 schema:givenName R.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017474211.35
    94 rdf:type schema:Person
    95 sg:person.01115357714.31 schema:affiliation https://www.grid.ac/institutes/grid.497397.7
    96 schema:familyName Mercadier
    97 schema:givenName N.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115357714.31
    99 rdf:type schema:Person
    100 sg:person.011547775532.57 schema:affiliation https://www.grid.ac/institutes/grid.497397.7
    101 schema:familyName Guarrera
    102 schema:givenName V.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011547775532.57
    104 rdf:type schema:Person
    105 sg:person.01223040123.05 schema:affiliation https://www.grid.ac/institutes/grid.497397.7
    106 schema:familyName Guerin
    107 schema:givenName W.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223040123.05
    109 rdf:type schema:Person
    110 sg:person.014250405311.41 schema:affiliation https://www.grid.ac/institutes/grid.497397.7
    111 schema:familyName Baudouin
    112 schema:givenName Q.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014250405311.41
    114 rdf:type schema:Person
    115 sg:pub.10.1038/208029a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021910447
    116 https://doi.org/10.1038/208029a0
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1038/368436a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005347288
    119 https://doi.org/10.1038/368436a0
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1038/414708a schema:sameAs https://app.dimensions.ai/details/publication/pub.1034186011
    122 https://doi.org/10.1038/414708a
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1038/nature01974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022559465
    125 https://doi.org/10.1038/nature01974
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1038/nature10920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028680404
    128 https://doi.org/10.1038/nature10920
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1038/nphoton.2011.320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002327096
    131 https://doi.org/10.1038/nphoton.2011.320
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/nphoton.2013.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021086028
    134 https://doi.org/10.1038/nphoton.2013.29
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1038/nphys1035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006581981
    137 https://doi.org/10.1038/nphys1035
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/nphys971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000774313
    140 https://doi.org/10.1038/nphys971
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.optcom.2004.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030415049
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1070/qe1986v016n02abeh005792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058180672
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1086/182252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058511763
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1088/2040-8978/12/2/024002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052432994
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1088/2040-8986/12/2/020201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059181360
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1093/acprof:oso/9780199548279.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098773768
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1103/physreva.87.013412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009660434
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1103/physrevlett.101.093002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027438680
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1103/physrevlett.102.173903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017766144
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1103/physrevlett.107.063904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060758615
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1103/physrevlett.82.2278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819120
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1103/physrevlett.91.223904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827578
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/jqe.1972.1077234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061300492
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1126/science.1155311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457559
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1126/science.212.4490.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062522849
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1209/0295-5075/96/34005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029506675
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1364/oe.17.011236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065190728
    175 rdf:type schema:CreativeWork
    176 https://www.grid.ac/institutes/grid.497397.7 schema:alternateName Institut de Physique de Nice
    177 schema:name Institut Non Linéaire de Nice, CNRS, Université de Nice Sophia-Antipolis, 1361 route des Lucioles, 06560 Valbonne, France
    178 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...