Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-03

AUTHORS

Sanfeng Wu, Jason S. Ross, Gui-Bin Liu, Grant Aivazian, Aaron Jones, Zaiyao Fei, Wenguang Zhu, Di Xiao, Wang Yao, David Cobden, Xiaodong Xu

ABSTRACT

Crystal symmetry governs the nature of electronic Bloch states. For example, in the presence of time-reversal symmetry, the orbital magnetic moment and Berry curvature of the Bloch states must vanish unless inversion symmetry is broken1. In certain two-dimensional electron systems such as bilayer graphene, the intrinsic inversion symmetry can be broken simply by applying a perpendicular electric field2,3. In principle, this offers the possibility of switching on/off and continuously tuning the magnetic moment and Berry curvature near the Dirac valleys by reversible electrical control4,5. Here we investigate this possibility using polarization-resolved photoluminescence of bilayer MoS2, which has the same symmetry as bilayer graphene but has a bandgap in the visible spectrum6,7 allowing direct optical probing5,8,9,10,11,12. We find that in bilayer MoS2 the circularly polarized photoluminescence can be continuously tuned from −15% to 15% as a function of gate voltage, whereas in structurally non-centrosymmetric monolayer MoS2 the photoluminescence polarization is gate independent. The observations are well explained as resulting from the continuous variation of orbital magnetic moments between positive and negative values through symmetry control. More... »

PAGES

149

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys2524

DOI

http://dx.doi.org/10.1038/nphys2524

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032962232


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Physics, University of Washington, Seattle, Washington 98195, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Sanfeng", 
        "id": "sg:person.01353012556.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353012556.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Material Science and Engineering, University of Washington, Seattle, Washington 98195, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ross", 
        "givenName": "Jason S.", 
        "id": "sg:person.01361460661.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361460661.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Gui-Bin", 
        "id": "sg:person.01301470055.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301470055.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Physics, University of Washington, Seattle, Washington 98195, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aivazian", 
        "givenName": "Grant", 
        "id": "sg:person.01245232261.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245232261.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Physics, University of Washington, Seattle, Washington 98195, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "Aaron", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Physics, University of Washington, Seattle, Washington 98195, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fei", 
        "givenName": "Zaiyao", 
        "id": "sg:person.0777420556.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777420556.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA", 
            "Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA", 
            "ICQD/HFNL, University of Science and Technology of China, Hefei, Anhui 230026, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Wenguang", 
        "id": "sg:person.01232461654.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232461654.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "https://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA", 
            "Department of Physics, Carnegie Mellon University, Pittsburg, Pennsylvania 15213, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Di", 
        "id": "sg:person.01174312056.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174312056.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Wang", 
        "id": "sg:person.01242425256.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242425256.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Physics, University of Washington, Seattle, Washington 98195, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cobden", 
        "givenName": "David", 
        "id": "sg:person.0640205720.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640205720.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Physics, University of Washington, Seattle, Washington 98195, USA", 
            "Department of Material Science and Engineering, University of Washington, Seattle, Washington 98195, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Xiaodong", 
        "id": "sg:person.0752303161.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752303161.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature07871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000687254", 
          "https://doi.org/10.1038/nature07871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000687254", 
          "https://doi.org/10.1038/nature07871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3636402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003552497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.153402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004102128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.153402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004102128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.157003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006486057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.157003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006486057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.136604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006821107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.136604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006821107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.054438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008627354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.054438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008627354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.161403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014668061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.161403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014668061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.195460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015669252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.195460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015669252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn203715c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020715326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2010.192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021575023", 
          "https://doi.org/10.1038/nprot.2010.192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027885336", 
          "https://doi.org/10.1038/nphys547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl201874w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028395186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl201874w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028395186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.205302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030578033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.205302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030578033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn1003937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030794634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035823183", 
          "https://doi.org/10.1038/nnano.2012.105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0502848102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036398807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.256405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037841873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.256405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037841873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038550073", 
          "https://doi.org/10.1038/nnano.2012.96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.235406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041938316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.235406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041938316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043686943", 
          "https://doi.org/10.1038/nature08105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043686943", 
          "https://doi.org/10.1038/nature08105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.236809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045848100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.236809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045848100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047704758", 
          "https://doi.org/10.1038/nnano.2010.279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.156802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049471343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.156802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049471343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049548334", 
          "https://doi.org/10.1038/ncomms1882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.1959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053044428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.1959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053044428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2018178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053218712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2018178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053218712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053264408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053264408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.3955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.3955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559427"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-03", 
    "datePublishedReg": "2013-03-01", 
    "description": "Crystal symmetry governs the nature of electronic Bloch states. For example, in the presence of time-reversal symmetry, the orbital magnetic moment and Berry curvature of the Bloch states must vanish unless inversion symmetry is broken1. In certain two-dimensional electron systems such as bilayer graphene, the intrinsic inversion symmetry can be broken simply by applying a perpendicular electric field2,3. In principle, this offers the possibility of switching on/off and continuously tuning the magnetic moment and Berry curvature near the Dirac valleys by reversible electrical control4,5. Here we investigate this possibility using polarization-resolved photoluminescence of bilayer MoS2, which has the same symmetry as bilayer graphene but has a bandgap in the visible spectrum6,7 allowing direct optical probing5,8,9,10,11,12. We find that in bilayer MoS2 the circularly polarized photoluminescence can be continuously tuned from \u221215% to 15% as a function of gate voltage, whereas in structurally non-centrosymmetric monolayer MoS2 the photoluminescence polarization is gate independent. The observations are well explained as resulting from the continuous variation of orbital magnetic moments between positive and negative values through symmetry control.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys2524", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3133178", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4319603", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3079608", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4321303", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7436300", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2", 
    "pagination": "149", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9d071a0e73e37171310552f7abd05f1972b2ee228ddc9bc523a3ae45833803b7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys2524"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032962232"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys2524", 
      "https://app.dimensions.ai/details/publication/pub.1032962232"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys2524"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys2524'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys2524'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys2524'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys2524'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys2524 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author N6bdf91a839d24a289d829d9a41309d0f
4 schema:citation sg:pub.10.1038/nature07871
5 sg:pub.10.1038/nature08105
6 sg:pub.10.1038/ncomms1882
7 sg:pub.10.1038/nnano.2010.279
8 sg:pub.10.1038/nnano.2012.105
9 sg:pub.10.1038/nnano.2012.96
10 sg:pub.10.1038/nphys547
11 sg:pub.10.1038/nprot.2010.192
12 https://doi.org/10.1021/nl2018178
13 https://doi.org/10.1021/nl201874w
14 https://doi.org/10.1021/nl903868w
15 https://doi.org/10.1021/nn1003937
16 https://doi.org/10.1021/nn203715c
17 https://doi.org/10.1063/1.3636402
18 https://doi.org/10.1073/pnas.0502848102
19 https://doi.org/10.1103/physrevb.44.3955
20 https://doi.org/10.1103/physrevb.77.054438
21 https://doi.org/10.1103/physrevb.77.235406
22 https://doi.org/10.1103/physrevb.84.153402
23 https://doi.org/10.1103/physrevb.84.195460
24 https://doi.org/10.1103/physrevb.85.161403
25 https://doi.org/10.1103/physrevb.85.205302
26 https://doi.org/10.1103/physrevlett.102.256405
27 https://doi.org/10.1103/physrevlett.105.136805
28 https://doi.org/10.1103/physrevlett.107.136604
29 https://doi.org/10.1103/physrevlett.108.156802
30 https://doi.org/10.1103/physrevlett.108.196802
31 https://doi.org/10.1103/physrevlett.98.157003
32 https://doi.org/10.1103/physrevlett.99.236809
33 https://doi.org/10.1103/revmodphys.82.1959
34 schema:datePublished 2013-03
35 schema:datePublishedReg 2013-03-01
36 schema:description Crystal symmetry governs the nature of electronic Bloch states. For example, in the presence of time-reversal symmetry, the orbital magnetic moment and Berry curvature of the Bloch states must vanish unless inversion symmetry is broken1. In certain two-dimensional electron systems such as bilayer graphene, the intrinsic inversion symmetry can be broken simply by applying a perpendicular electric field2,3. In principle, this offers the possibility of switching on/off and continuously tuning the magnetic moment and Berry curvature near the Dirac valleys by reversible electrical control4,5. Here we investigate this possibility using polarization-resolved photoluminescence of bilayer MoS2, which has the same symmetry as bilayer graphene but has a bandgap in the visible spectrum6,7 allowing direct optical probing5,8,9,10,11,12. We find that in bilayer MoS2 the circularly polarized photoluminescence can be continuously tuned from −15% to 15% as a function of gate voltage, whereas in structurally non-centrosymmetric monolayer MoS2 the photoluminescence polarization is gate independent. The observations are well explained as resulting from the continuous variation of orbital magnetic moments between positive and negative values through symmetry control.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N35167ec661aa4cc8929d0d68c94c621b
41 Ne1443f4dc0614cec874d7db99e023f79
42 sg:journal.1034717
43 schema:name Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2
44 schema:pagination 149
45 schema:productId N58b4687201f64fe29098fa8bba2a0996
46 Nb32c3c2243b34aad995cc3f845823637
47 Nde9052b551ef4cb48dcac7763b5bbdb8
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032962232
49 https://doi.org/10.1038/nphys2524
50 schema:sdDatePublished 2019-04-10T15:40
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N86f50145568c470dbbd97e66d7cfebc8
53 schema:url https://www.nature.com/articles/nphys2524
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0f6aa7f6f3bf46b7b8bcb3da981bcdfa rdf:first sg:person.01174312056.32
58 rdf:rest Nf66f46026f4b4b729c42898a723e884f
59 N198753630b104fa29481ad85c0ec8d56 rdf:first sg:person.0777420556.57
60 rdf:rest Nb14d4eb4f4e442c2ad67dfaa2ff494ba
61 N206a7d4d6ab74fccb514dccc0ec10fbc rdf:first sg:person.0640205720.34
62 rdf:rest N7b7da67501da4c5792e9409b524c6580
63 N35167ec661aa4cc8929d0d68c94c621b schema:issueNumber 3
64 rdf:type schema:PublicationIssue
65 N58b4687201f64fe29098fa8bba2a0996 schema:name doi
66 schema:value 10.1038/nphys2524
67 rdf:type schema:PropertyValue
68 N6bdf91a839d24a289d829d9a41309d0f rdf:first sg:person.01353012556.01
69 rdf:rest N9f300a03e4f84ced931a612737b07a90
70 N7b7da67501da4c5792e9409b524c6580 rdf:first sg:person.0752303161.81
71 rdf:rest rdf:nil
72 N86f50145568c470dbbd97e66d7cfebc8 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N91f9dfcb3dd0481caac81e035f06daab rdf:first Nf26619f73f984e63832a25c3a79fd92c
75 rdf:rest N198753630b104fa29481ad85c0ec8d56
76 N9f300a03e4f84ced931a612737b07a90 rdf:first sg:person.01361460661.32
77 rdf:rest Nc06d7076b6ae4c09b57dcae5cb111eed
78 Na42322f8ffb3495da26f477577573cfb rdf:first sg:person.01245232261.22
79 rdf:rest N91f9dfcb3dd0481caac81e035f06daab
80 Nb14d4eb4f4e442c2ad67dfaa2ff494ba rdf:first sg:person.01232461654.97
81 rdf:rest N0f6aa7f6f3bf46b7b8bcb3da981bcdfa
82 Nb32c3c2243b34aad995cc3f845823637 schema:name dimensions_id
83 schema:value pub.1032962232
84 rdf:type schema:PropertyValue
85 Nc06d7076b6ae4c09b57dcae5cb111eed rdf:first sg:person.01301470055.13
86 rdf:rest Na42322f8ffb3495da26f477577573cfb
87 Nde9052b551ef4cb48dcac7763b5bbdb8 schema:name readcube_id
88 schema:value 9d071a0e73e37171310552f7abd05f1972b2ee228ddc9bc523a3ae45833803b7
89 rdf:type schema:PropertyValue
90 Ne1443f4dc0614cec874d7db99e023f79 schema:volumeNumber 9
91 rdf:type schema:PublicationVolume
92 Nf26619f73f984e63832a25c3a79fd92c schema:affiliation https://www.grid.ac/institutes/grid.34477.33
93 schema:familyName Jones
94 schema:givenName Aaron
95 rdf:type schema:Person
96 Nf66f46026f4b4b729c42898a723e884f rdf:first sg:person.01242425256.87
97 rdf:rest N206a7d4d6ab74fccb514dccc0ec10fbc
98 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
102 schema:name Condensed Matter Physics
103 rdf:type schema:DefinedTerm
104 sg:grant.3079608 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys2524
105 rdf:type schema:MonetaryGrant
106 sg:grant.3133178 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys2524
107 rdf:type schema:MonetaryGrant
108 sg:grant.4319603 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys2524
109 rdf:type schema:MonetaryGrant
110 sg:grant.4321303 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys2524
111 rdf:type schema:MonetaryGrant
112 sg:grant.7436300 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys2524
113 rdf:type schema:MonetaryGrant
114 sg:journal.1034717 schema:issn 1745-2473
115 1745-2481
116 schema:name Nature Physics
117 rdf:type schema:Periodical
118 sg:person.01174312056.32 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
119 schema:familyName Xiao
120 schema:givenName Di
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174312056.32
122 rdf:type schema:Person
123 sg:person.01232461654.97 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
124 schema:familyName Zhu
125 schema:givenName Wenguang
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232461654.97
127 rdf:type schema:Person
128 sg:person.01242425256.87 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
129 schema:familyName Yao
130 schema:givenName Wang
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242425256.87
132 rdf:type schema:Person
133 sg:person.01245232261.22 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
134 schema:familyName Aivazian
135 schema:givenName Grant
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245232261.22
137 rdf:type schema:Person
138 sg:person.01301470055.13 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
139 schema:familyName Liu
140 schema:givenName Gui-Bin
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301470055.13
142 rdf:type schema:Person
143 sg:person.01353012556.01 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
144 schema:familyName Wu
145 schema:givenName Sanfeng
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353012556.01
147 rdf:type schema:Person
148 sg:person.01361460661.32 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
149 schema:familyName Ross
150 schema:givenName Jason S.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361460661.32
152 rdf:type schema:Person
153 sg:person.0640205720.34 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
154 schema:familyName Cobden
155 schema:givenName David
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640205720.34
157 rdf:type schema:Person
158 sg:person.0752303161.81 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
159 schema:familyName Xu
160 schema:givenName Xiaodong
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752303161.81
162 rdf:type schema:Person
163 sg:person.0777420556.57 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
164 schema:familyName Fei
165 schema:givenName Zaiyao
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777420556.57
167 rdf:type schema:Person
168 sg:pub.10.1038/nature07871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000687254
169 https://doi.org/10.1038/nature07871
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nature08105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043686943
172 https://doi.org/10.1038/nature08105
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/ncomms1882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049548334
175 https://doi.org/10.1038/ncomms1882
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
178 https://doi.org/10.1038/nnano.2010.279
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nnano.2012.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035823183
181 https://doi.org/10.1038/nnano.2012.105
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nnano.2012.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038550073
184 https://doi.org/10.1038/nnano.2012.96
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nphys547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027885336
187 https://doi.org/10.1038/nphys547
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nprot.2010.192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021575023
190 https://doi.org/10.1038/nprot.2010.192
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/nl2018178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053218712
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1021/nl201874w schema:sameAs https://app.dimensions.ai/details/publication/pub.1028395186
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/nl903868w schema:sameAs https://app.dimensions.ai/details/publication/pub.1031417418
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/nn1003937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030794634
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/nn203715c schema:sameAs https://app.dimensions.ai/details/publication/pub.1020715326
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1063/1.3636402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003552497
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1073/pnas.0502848102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036398807
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevb.44.3955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060559427
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevb.77.054438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008627354
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevb.77.235406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041938316
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevb.84.153402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004102128
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevb.84.195460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015669252
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevb.85.161403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014668061
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevb.85.205302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030578033
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.102.256405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037841873
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.105.136805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004648868
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.107.136604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006821107
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.108.156802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049471343
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.108.196802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053264408
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.98.157003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006486057
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevlett.99.236809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045848100
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/revmodphys.82.1959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053044428
235 rdf:type schema:CreativeWork
236 https://www.grid.ac/institutes/grid.147455.6 schema:alternateName Carnegie Mellon University
237 schema:name Department of Physics, Carnegie Mellon University, Pittsburg, Pennsylvania 15213, USA
238 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
241 schema:name Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
244 schema:name Department of Material Science and Engineering, University of Washington, Seattle, Washington 98195, USA
245 Department of Physics, University of Washington, Seattle, Washington 98195, USA
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.59053.3a schema:alternateName University of Science and Technology of China
248 schema:name Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
249 ICQD/HFNL, University of Science and Technology of China, Hefei, Anhui 230026, China
250 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...