Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-03

AUTHORS

K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A. K. Geim

ABSTRACT

There are two known distinct types of the integer quantum Hall effect. One is the conventional quantum Hall effect, characteristic of two-dimensional semiconductor systems1, 2, and the other is its relativistic counterpart observed in graphene, where charge carriers mimic Dirac fermions characterized by Berry's phase , which results in shifted positions of the Hall plateaus3, 4, 5, 6, 7, 8, 9. Here we report a third type of the integer quantum Hall effect. Charge carriers in bilayer graphene have a parabolic energy spectrum but are chiral and show Berry's phase 2 affecting their quantum dynamics. The Landau quantization of these fermions results in plateaus in Hall conductivity at standard integer positions, but the last (zero-level) plateau is missing. The zero-level anomaly is accompanied by metallic conductivity in the limit of low concentrations and high magnetic fields, in stark contrast to the conventional, insulating behaviour in this regime. The revealed chiral fermions have no known analogues and present an intriguing case for quantum-mechanical studies. More... »

PAGES

177-180

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys245

DOI

http://dx.doi.org/10.1038/nphys245

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048452401


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Novoselov", 
        "givenName": "K. S.", 
        "id": "sg:person.01207120103.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207120103.29"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "McCann", 
        "givenName": "E.", 
        "id": "sg:person.01044230165.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044230165.07"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Morozov", 
        "givenName": "S. V.", 
        "id": "sg:person.07423561367.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07423561367.62"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Fal\u2019ko", 
        "givenName": "V. I.", 
        "id": "sg:person.01367004535.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367004535.41"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Katsnelson", 
        "givenName": "M. I.", 
        "id": "sg:person.0721775233.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721775233.60"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Zeitler", 
        "givenName": "U.", 
        "id": "sg:person.0621336461.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621336461.89"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Jiang", 
        "givenName": "D.", 
        "id": "sg:person.01146544531.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146544531.57"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Schedin", 
        "givenName": "F.", 
        "type": "Person"
      }, 
      {
        "familyName": "Geim", 
        "givenName": "A. K.", 
        "id": "sg:person.0721730631.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721730631.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018730110113644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007622624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aop.2006.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011249065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.146801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014724283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.146801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014724283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0502848102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036398807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.086805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040008071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.086805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040008071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3350-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041153350", 
          "https://doi.org/10.1007/978-1-4612-3350-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3350-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041153350", 
          "https://doi.org/10.1007/978-1-4612-3350-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1984.0023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052314442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.104.666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.104.666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.71.622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060453259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.71.622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060453259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.4460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.4460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.245420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.245420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797796"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-03", 
    "datePublishedReg": "2006-03-01", 
    "description": "There are two known distinct types of the integer quantum Hall effect. One is the conventional quantum Hall effect, characteristic of two-dimensional semiconductor systems1, 2, and the other is its relativistic counterpart observed in graphene, where charge carriers mimic Dirac fermions characterized by Berry's phase , which results in shifted positions of the Hall plateaus3, 4, 5, 6, 7, 8, 9. Here we report a third type of the integer quantum Hall effect. Charge carriers in bilayer graphene have a parabolic energy spectrum but are chiral and show Berry's phase 2 affecting their quantum dynamics. The Landau quantization of these fermions results in plateaus in Hall conductivity at standard integer positions, but the last (zero-level) plateau is missing. The zero-level anomaly is accompanied by metallic conductivity in the limit of low concentrations and high magnetic fields, in stark contrast to the conventional, insulating behaviour in this regime. The revealed chiral fermions have no known analogues and present an intriguing case for quantum-mechanical studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys245", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Unconventional quantum Hall effect and Berry\u2019s phase of 2\u03c0 in bilayer graphene", 
    "pagination": "177-180", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e6d1924260f44913d64be8f6a8a043da226e99f0d6f6f48a9ec61646c8c71367"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys245"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048452401"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys245", 
      "https://app.dimensions.ai/details/publication/pub.1048452401"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87078_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nphys/journal/v2/n3/full/nphys245.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys245'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys245'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys245'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys245'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys245 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author Neb9cb96f62784b1e8944b777dfc683b5
4 schema:citation sg:pub.10.1007/978-1-4612-3350-3
5 sg:pub.10.1038/nature04233
6 sg:pub.10.1038/nature04235
7 https://doi.org/10.1016/j.aop.2006.04.006
8 https://doi.org/10.1073/pnas.0502848102
9 https://doi.org/10.1080/00018730110113644
10 https://doi.org/10.1098/rspa.1984.0023
11 https://doi.org/10.1103/physrev.104.666
12 https://doi.org/10.1103/physrev.71.622
13 https://doi.org/10.1103/physrevb.45.4460
14 https://doi.org/10.1103/physrevb.65.245420
15 https://doi.org/10.1103/physrevlett.61.2015
16 https://doi.org/10.1103/physrevlett.95.146801
17 https://doi.org/10.1103/physrevlett.96.086805
18 https://doi.org/10.1126/science.1102896
19 schema:datePublished 2006-03
20 schema:datePublishedReg 2006-03-01
21 schema:description There are two known distinct types of the integer quantum Hall effect. One is the conventional quantum Hall effect, characteristic of two-dimensional semiconductor systems1, 2, and the other is its relativistic counterpart observed in graphene, where charge carriers mimic Dirac fermions characterized by Berry's phase , which results in shifted positions of the Hall plateaus3, 4, 5, 6, 7, 8, 9. Here we report a third type of the integer quantum Hall effect. Charge carriers in bilayer graphene have a parabolic energy spectrum but are chiral and show Berry's phase 2 affecting their quantum dynamics. The Landau quantization of these fermions results in plateaus in Hall conductivity at standard integer positions, but the last (zero-level) plateau is missing. The zero-level anomaly is accompanied by metallic conductivity in the limit of low concentrations and high magnetic fields, in stark contrast to the conventional, insulating behaviour in this regime. The revealed chiral fermions have no known analogues and present an intriguing case for quantum-mechanical studies.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf Na76505d1c5bc41bebc48b887fd17b69b
26 Nad5acfc0f9ae445d90598a4741ba9a66
27 sg:journal.1034717
28 schema:name Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene
29 schema:pagination 177-180
30 schema:productId N0ac52537f8bb47588a25fcd69c0a36ea
31 N1467f8f60dc94cdfb374d07273f6ada4
32 N93fa02fb20f14ff0b07365a686e185db
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048452401
34 https://doi.org/10.1038/nphys245
35 schema:sdDatePublished 2019-04-11T12:21
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nfebe1bc03f2d4b8bb8269233e623e556
38 schema:url http://www.nature.com/nphys/journal/v2/n3/full/nphys245.html
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N0ac52537f8bb47588a25fcd69c0a36ea schema:name doi
43 schema:value 10.1038/nphys245
44 rdf:type schema:PropertyValue
45 N1467f8f60dc94cdfb374d07273f6ada4 schema:name dimensions_id
46 schema:value pub.1048452401
47 rdf:type schema:PropertyValue
48 N1cb0d176dcb445f5aeb40aec1659b1c0 rdf:first sg:person.01044230165.07
49 rdf:rest N75820a9af30f4645aea53b0587951ba9
50 N29d5d6e67c634bfeb79f1ba65a96d208 rdf:first sg:person.0721775233.60
51 rdf:rest Na8f5bffce9bc40288a334d3e8446a9d1
52 N2a28c0aca57045d1b08c54d764518f93 rdf:first sg:person.0721730631.45
53 rdf:rest rdf:nil
54 N5835ec5adc49401da798b082add48318 schema:familyName Schedin
55 schema:givenName F.
56 rdf:type schema:Person
57 N619817664d954b8081403a22755b670b rdf:first N5835ec5adc49401da798b082add48318
58 rdf:rest N2a28c0aca57045d1b08c54d764518f93
59 N75820a9af30f4645aea53b0587951ba9 rdf:first sg:person.07423561367.62
60 rdf:rest Ncde929c2240a4c5a8ef46ec4c4e409d5
61 N8a58c988dbc54e7e89200a5198fa090b rdf:first sg:person.01146544531.57
62 rdf:rest N619817664d954b8081403a22755b670b
63 N93fa02fb20f14ff0b07365a686e185db schema:name readcube_id
64 schema:value e6d1924260f44913d64be8f6a8a043da226e99f0d6f6f48a9ec61646c8c71367
65 rdf:type schema:PropertyValue
66 Na76505d1c5bc41bebc48b887fd17b69b schema:issueNumber 3
67 rdf:type schema:PublicationIssue
68 Na8f5bffce9bc40288a334d3e8446a9d1 rdf:first sg:person.0621336461.89
69 rdf:rest N8a58c988dbc54e7e89200a5198fa090b
70 Nad5acfc0f9ae445d90598a4741ba9a66 schema:volumeNumber 2
71 rdf:type schema:PublicationVolume
72 Ncde929c2240a4c5a8ef46ec4c4e409d5 rdf:first sg:person.01367004535.41
73 rdf:rest N29d5d6e67c634bfeb79f1ba65a96d208
74 Neb9cb96f62784b1e8944b777dfc683b5 rdf:first sg:person.01207120103.29
75 rdf:rest N1cb0d176dcb445f5aeb40aec1659b1c0
76 Nfebe1bc03f2d4b8bb8269233e623e556 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
79 schema:name Physical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
82 schema:name Condensed Matter Physics
83 rdf:type schema:DefinedTerm
84 sg:journal.1034717 schema:issn 1745-2473
85 1745-2481
86 schema:name Nature Physics
87 rdf:type schema:Periodical
88 sg:person.01044230165.07 schema:familyName McCann
89 schema:givenName E.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044230165.07
91 rdf:type schema:Person
92 sg:person.01146544531.57 schema:familyName Jiang
93 schema:givenName D.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146544531.57
95 rdf:type schema:Person
96 sg:person.01207120103.29 schema:familyName Novoselov
97 schema:givenName K. S.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207120103.29
99 rdf:type schema:Person
100 sg:person.01367004535.41 schema:familyName Fal’ko
101 schema:givenName V. I.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367004535.41
103 rdf:type schema:Person
104 sg:person.0621336461.89 schema:familyName Zeitler
105 schema:givenName U.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621336461.89
107 rdf:type schema:Person
108 sg:person.0721730631.45 schema:familyName Geim
109 schema:givenName A. K.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721730631.45
111 rdf:type schema:Person
112 sg:person.0721775233.60 schema:familyName Katsnelson
113 schema:givenName M. I.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721775233.60
115 rdf:type schema:Person
116 sg:person.07423561367.62 schema:familyName Morozov
117 schema:givenName S. V.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07423561367.62
119 rdf:type schema:Person
120 sg:pub.10.1007/978-1-4612-3350-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041153350
121 https://doi.org/10.1007/978-1-4612-3350-3
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
124 https://doi.org/10.1038/nature04233
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
127 https://doi.org/10.1038/nature04235
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.aop.2006.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011249065
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1073/pnas.0502848102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036398807
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1080/00018730110113644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007622624
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1098/rspa.1984.0023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052314442
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrev.104.666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418310
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrev.71.622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060453259
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevb.45.4460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060561552
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.65.245420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060603587
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.61.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797796
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevlett.95.146801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014724283
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.96.086805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040008071
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
152 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...