Mapping Dirac quasiparticles near a single Coulomb impurity on graphene View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-09

AUTHORS

Yang Wang, Victor W. Brar, Andrey V. Shytov, Qiong Wu, William Regan, Hsin-Zon Tsai, Alex Zettl, Leonid S. Levitov, Michael F. Crommie

ABSTRACT

The response of Dirac fermions to a Coulomb potential is predicted to differ significantly from how non-relativistic electrons behave in traditional atomic and impurity systems1,2,3. Surprisingly, many key theoretical predictions for this ultra-relativistic regime have not been tested4,5,6,7,8,9,10,11,12. Graphene, a two-dimensional material in which electrons behave like massless Dirac fermions13,14, provides a unique opportunity to test such predictions. Graphene’s response to a Coulomb potential also offers insight into important material characteristics, including graphene’s intrinsic dielectric constant6,8, which is the primary factor determining the strength of electron–electron interactions in graphene15. Here we present a direct measurement of the nanoscale response of Dirac fermions to a single Coulomb potential placed on a gated graphene device. Scanning tunnelling microscopy was used to fabricate tunable charge impurities on graphene, and to image electronic screening around them for a Q = +1|e| charge state. Electron-like and hole-like Dirac fermions were observed to respond differently to a Coulomb potential. Comparing the observed electron–hole asymmetry to theoretical simulations has allowed us to test predictions for how Dirac fermions behave near a Coulomb potential, as well as extract graphene’s intrinsic dielectric constant: ɛg = 3.0±1.0. This small value of ɛg indicates that electron–electron interactions can contribute significantly to graphene properties. More... »

PAGES

653

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys2379

DOI

http://dx.doi.org/10.1038/nphys2379

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000628005


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA", 
            "Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yang", 
        "id": "sg:person.01134710342.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134710342.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA", 
            "Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brar", 
        "givenName": "Victor W.", 
        "id": "sg:person.01315130433.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315130433.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Exeter", 
          "id": "https://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shytov", 
        "givenName": "Andrey V.", 
        "id": "sg:person.01365365342.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365365342.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA", 
            "Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Qiong", 
        "id": "sg:person.01140551442.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140551442.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA", 
            "Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Regan", 
        "givenName": "William", 
        "id": "sg:person.01015175270.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015175270.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsai", 
        "givenName": "Hsin-Zon", 
        "id": "sg:person.01137602530.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137602530.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA", 
            "Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zettl", 
        "givenName": "Alex", 
        "id": "sg:person.0766475362.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766475362.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levitov", 
        "givenName": "Leonid S.", 
        "id": "sg:person.0605102273.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605102273.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA", 
            "Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crommie", 
        "givenName": "Michael F.", 
        "id": "sg:person.01046572263.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046572263.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1142882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000657280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1001043499", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-82272-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001043499", 
          "https://doi.org/10.1007/978-3-642-82272-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-82272-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001043499", 
          "https://doi.org/10.1007/978-3-642-82272-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.166802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001208420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.166802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001208420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.84.1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001293825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.84.1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001293825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1171245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006821145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1171245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006821145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008618441", 
          "https://doi.org/10.1038/nphys1807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.246802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014052643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.246802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014052643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.076803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016890700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.076803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016890700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016917943", 
          "https://doi.org/10.1038/nphys1022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.076801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017992077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.076801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017992077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018587379", 
          "https://doi.org/10.1038/nnano.2010.172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018587379", 
          "https://doi.org/10.1038/nnano.2010.172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.205418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020457785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.205418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020457785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021599981", 
          "https://doi.org/10.1038/nmat2968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.245435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022781052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.245435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022781052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024874242", 
          "https://doi.org/10.1038/nphys935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.205122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026795818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.205122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026795818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.086402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027284025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.086402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027284025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.236801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034188583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.236801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034188583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1100242108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035747126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043769085", 
          "https://doi.org/10.1038/nphys2049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35000508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043990562", 
          "https://doi.org/10.1038/35000508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35000508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043990562", 
          "https://doi.org/10.1038/35000508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2005115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2005115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu1972v014n06abeh004735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058169890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.7656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.7656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.115318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060624277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.115318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060624277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.036805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.036805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.136803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.136803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1190920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.75.074716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063122564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.75.074716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063122564"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09", 
    "datePublishedReg": "2012-09-01", 
    "description": "The response of Dirac fermions to a Coulomb potential is predicted to differ significantly from how non-relativistic electrons behave in traditional atomic and impurity systems1,2,3. Surprisingly, many key theoretical predictions for this ultra-relativistic regime have not been tested4,5,6,7,8,9,10,11,12. Graphene, a two-dimensional material in which electrons behave like massless Dirac fermions13,14, provides a unique opportunity to test such predictions. Graphene\u2019s response to a Coulomb potential also offers insight into important material characteristics, including graphene\u2019s intrinsic dielectric constant6,8, which is the primary factor determining the strength of electron\u2013electron interactions in graphene15. Here we present a direct measurement of the nanoscale response of Dirac fermions to a single Coulomb potential placed on a gated graphene device. Scanning tunnelling microscopy was used to fabricate tunable charge impurities on graphene, and to image electronic screening around them for a Q = +1|e| charge state. Electron-like and hole-like Dirac fermions were observed to respond differently to a Coulomb potential. Comparing the observed electron\u2013hole asymmetry to theoretical simulations has allowed us to test predictions for how Dirac fermions behave near a Coulomb potential, as well as extract graphene\u2019s intrinsic dielectric constant: \u025bg = 3.0\u00b11.0. This small value of \u025bg indicates that electron\u2013electron interactions can contribute significantly to graphene properties.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys2379", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3100220", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Mapping Dirac quasiparticles near a single Coulomb impurity on graphene", 
    "pagination": "653", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "02fd7a1e2e6b64e6bd33345be752e1f5f79169f64618e7101ab0f289e6f1da9d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys2379"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000628005"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys2379", 
      "https://app.dimensions.ai/details/publication/pub.1000628005"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys2379"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys2379'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys2379'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys2379'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys2379'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys2379 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author N5c4d9fa6cea3406aa1926a883c87d3f7
4 schema:citation sg:pub.10.1007/978-3-642-82272-8
5 sg:pub.10.1038/35000508
6 sg:pub.10.1038/nature04233
7 sg:pub.10.1038/nature04235
8 sg:pub.10.1038/nmat2968
9 sg:pub.10.1038/nnano.2010.172
10 sg:pub.10.1038/nphys1022
11 sg:pub.10.1038/nphys1807
12 sg:pub.10.1038/nphys2049
13 sg:pub.10.1038/nphys935
14 https://app.dimensions.ai/details/publication/pub.1001043499
15 https://doi.org/10.1021/nl2005115
16 https://doi.org/10.1070/pu1972v014n06abeh004735
17 https://doi.org/10.1073/pnas.1100242108
18 https://doi.org/10.1103/physrevb.56.7656
19 https://doi.org/10.1103/physrevb.75.205418
20 https://doi.org/10.1103/physrevb.76.205122
21 https://doi.org/10.1103/physrevb.76.245435
22 https://doi.org/10.1103/physrevb.77.115318
23 https://doi.org/10.1103/physrevlett.100.076803
24 https://doi.org/10.1103/physrevlett.101.086402
25 https://doi.org/10.1103/physrevlett.104.036805
26 https://doi.org/10.1103/physrevlett.104.136803
27 https://doi.org/10.1103/physrevlett.81.5616
28 https://doi.org/10.1103/physrevlett.94.076801
29 https://doi.org/10.1103/physrevlett.99.166802
30 https://doi.org/10.1103/physrevlett.99.236801
31 https://doi.org/10.1103/physrevlett.99.246802
32 https://doi.org/10.1103/revmodphys.84.1067
33 https://doi.org/10.1126/science.1142882
34 https://doi.org/10.1126/science.1171245
35 https://doi.org/10.1126/science.1190920
36 https://doi.org/10.1143/jpsj.75.074716
37 schema:datePublished 2012-09
38 schema:datePublishedReg 2012-09-01
39 schema:description The response of Dirac fermions to a Coulomb potential is predicted to differ significantly from how non-relativistic electrons behave in traditional atomic and impurity systems1,2,3. Surprisingly, many key theoretical predictions for this ultra-relativistic regime have not been tested4,5,6,7,8,9,10,11,12. Graphene, a two-dimensional material in which electrons behave like massless Dirac fermions13,14, provides a unique opportunity to test such predictions. Graphene’s response to a Coulomb potential also offers insight into important material characteristics, including graphene’s intrinsic dielectric constant6,8, which is the primary factor determining the strength of electron–electron interactions in graphene15. Here we present a direct measurement of the nanoscale response of Dirac fermions to a single Coulomb potential placed on a gated graphene device. Scanning tunnelling microscopy was used to fabricate tunable charge impurities on graphene, and to image electronic screening around them for a Q = +1|e| charge state. Electron-like and hole-like Dirac fermions were observed to respond differently to a Coulomb potential. Comparing the observed electron–hole asymmetry to theoretical simulations has allowed us to test predictions for how Dirac fermions behave near a Coulomb potential, as well as extract graphene’s intrinsic dielectric constant: ɛg = 3.0±1.0. This small value of ɛg indicates that electron–electron interactions can contribute significantly to graphene properties.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N9afc58cad0864c52830c0196e7a235e7
44 Nec3a20ac2c3e474db85e4c11fe5554f0
45 sg:journal.1034717
46 schema:name Mapping Dirac quasiparticles near a single Coulomb impurity on graphene
47 schema:pagination 653
48 schema:productId N4cf4f9a454e247869d611ea34f54f9c4
49 N51270ba51d2c4599ace60cf5429efd75
50 N7ff1688cf10e4eabbc44567107e61370
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000628005
52 https://doi.org/10.1038/nphys2379
53 schema:sdDatePublished 2019-04-10T21:25
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nb1f0beafc15c404a8fac769d8021233d
56 schema:url https://www.nature.com/articles/nphys2379
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N45dc95c19921420f8b4169f998f39148 rdf:first sg:person.01046572263.84
61 rdf:rest rdf:nil
62 N4cf4f9a454e247869d611ea34f54f9c4 schema:name readcube_id
63 schema:value 02fd7a1e2e6b64e6bd33345be752e1f5f79169f64618e7101ab0f289e6f1da9d
64 rdf:type schema:PropertyValue
65 N51270ba51d2c4599ace60cf5429efd75 schema:name dimensions_id
66 schema:value pub.1000628005
67 rdf:type schema:PropertyValue
68 N54bed0461fed4844a2389bebd80c1001 rdf:first sg:person.01015175270.00
69 rdf:rest Nb97a1bc48fbe4152bef12748891ca6ef
70 N5c4d9fa6cea3406aa1926a883c87d3f7 rdf:first sg:person.01134710342.97
71 rdf:rest Nadf68f942370424480cf5abd481e333a
72 N63fa1f9b0d1b4b0fad1e8cbb4970ae3d rdf:first sg:person.01140551442.29
73 rdf:rest N54bed0461fed4844a2389bebd80c1001
74 N7ff1688cf10e4eabbc44567107e61370 schema:name doi
75 schema:value 10.1038/nphys2379
76 rdf:type schema:PropertyValue
77 N9afc58cad0864c52830c0196e7a235e7 schema:volumeNumber 8
78 rdf:type schema:PublicationVolume
79 Nadf68f942370424480cf5abd481e333a rdf:first sg:person.01315130433.67
80 rdf:rest Ncd4f59b85d2c4be5b0752fe99d32021b
81 Nb0c3cbfb4a504ef9b4035268a25412e0 rdf:first sg:person.0766475362.52
82 rdf:rest Nf6474ec253ed416a928d0fb90e3069ce
83 Nb1f0beafc15c404a8fac769d8021233d schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nb97a1bc48fbe4152bef12748891ca6ef rdf:first sg:person.01137602530.65
86 rdf:rest Nb0c3cbfb4a504ef9b4035268a25412e0
87 Ncd4f59b85d2c4be5b0752fe99d32021b rdf:first sg:person.01365365342.50
88 rdf:rest N63fa1f9b0d1b4b0fad1e8cbb4970ae3d
89 Nec3a20ac2c3e474db85e4c11fe5554f0 schema:issueNumber 9
90 rdf:type schema:PublicationIssue
91 Nf6474ec253ed416a928d0fb90e3069ce rdf:first sg:person.0605102273.86
92 rdf:rest N45dc95c19921420f8b4169f998f39148
93 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
94 schema:name Technology
95 rdf:type schema:DefinedTerm
96 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
97 schema:name Nanotechnology
98 rdf:type schema:DefinedTerm
99 sg:grant.3100220 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys2379
100 rdf:type schema:MonetaryGrant
101 sg:journal.1034717 schema:issn 1745-2473
102 1745-2481
103 schema:name Nature Physics
104 rdf:type schema:Periodical
105 sg:person.01015175270.00 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
106 schema:familyName Regan
107 schema:givenName William
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015175270.00
109 rdf:type schema:Person
110 sg:person.01046572263.84 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
111 schema:familyName Crommie
112 schema:givenName Michael F.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046572263.84
114 rdf:type schema:Person
115 sg:person.01134710342.97 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
116 schema:familyName Wang
117 schema:givenName Yang
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134710342.97
119 rdf:type schema:Person
120 sg:person.01137602530.65 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
121 schema:familyName Tsai
122 schema:givenName Hsin-Zon
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137602530.65
124 rdf:type schema:Person
125 sg:person.01140551442.29 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
126 schema:familyName Wu
127 schema:givenName Qiong
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140551442.29
129 rdf:type schema:Person
130 sg:person.01315130433.67 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
131 schema:familyName Brar
132 schema:givenName Victor W.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315130433.67
134 rdf:type schema:Person
135 sg:person.01365365342.50 schema:affiliation https://www.grid.ac/institutes/grid.8391.3
136 schema:familyName Shytov
137 schema:givenName Andrey V.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365365342.50
139 rdf:type schema:Person
140 sg:person.0605102273.86 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
141 schema:familyName Levitov
142 schema:givenName Leonid S.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605102273.86
144 rdf:type schema:Person
145 sg:person.0766475362.52 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
146 schema:familyName Zettl
147 schema:givenName Alex
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766475362.52
149 rdf:type schema:Person
150 sg:pub.10.1007/978-3-642-82272-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001043499
151 https://doi.org/10.1007/978-3-642-82272-8
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/35000508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043990562
154 https://doi.org/10.1038/35000508
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
157 https://doi.org/10.1038/nature04233
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
160 https://doi.org/10.1038/nature04235
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nmat2968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021599981
163 https://doi.org/10.1038/nmat2968
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nnano.2010.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018587379
166 https://doi.org/10.1038/nnano.2010.172
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nphys1022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016917943
169 https://doi.org/10.1038/nphys1022
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nphys1807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008618441
172 https://doi.org/10.1038/nphys1807
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nphys2049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043769085
175 https://doi.org/10.1038/nphys2049
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nphys935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024874242
178 https://doi.org/10.1038/nphys935
179 rdf:type schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1001043499 schema:CreativeWork
181 https://doi.org/10.1021/nl2005115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218510
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1070/pu1972v014n06abeh004735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058169890
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1073/pnas.1100242108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035747126
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevb.56.7656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060586602
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevb.75.205418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020457785
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevb.76.205122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026795818
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevb.76.245435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022781052
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevb.77.115318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060624277
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.100.076803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016890700
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.101.086402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027284025
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.104.036805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756515
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevlett.104.136803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756784
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.81.5616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818699
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevlett.94.076801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017992077
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.99.166802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001208420
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevlett.99.236801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034188583
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevlett.99.246802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014052643
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/revmodphys.84.1067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001293825
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1126/science.1142882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000657280
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1126/science.1171245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006821145
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1126/science.1190920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462479
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1143/jpsj.75.074716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063122564
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
226 schema:name Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, USA
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
229 schema:name Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
230 Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
233 schema:name Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.8391.3 schema:alternateName University of Exeter
236 schema:name School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...