Superfluid behaviour of a two-dimensional Bose gas View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-09

AUTHORS

Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Léonard, Jérôme Beugnon, Christof Weitenberg, Jean Dalibard

ABSTRACT

Owing to thermal fluctuations, two-dimensional (2D) systems cannot undergo a conventional phase transition associated with the breaking of a continuous symmetry1. Nevertheless they may exhibit a phase transition to a state with quasi-long-range order via the Berezinskii–Kosterlitz–Thouless (BKT) mechanism2. A paradigm example is the 2D Bose fluid, such as a liquid helium film3, which cannot condense at non-zero temperature although it becomes superfluid above a critical phase space density. The quasi-long-range coherence and the microscopic nature of the BKT transition were recently explored with ultracold atomic gases4,5,6. However, a direct observation of superfluidity in terms of frictionless flow is still missing for these systems. Here we probe the superfluidity of a 2D trapped Bose gas using a moving obstacle formed by a micrometre-sized laser beam. We find a dramatic variation of the response of the fluid, depending on its degree of degeneracy at the obstacle location. More... »

PAGES

645

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys2378

DOI

http://dx.doi.org/10.1038/nphys2378

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012418899


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, F-75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desbuquois", 
        "givenName": "R\u00e9mi", 
        "id": "sg:person.0730402122.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730402122.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, F-75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chomaz", 
        "givenName": "Lauriane", 
        "id": "sg:person.0776515322.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776515322.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, F-75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yefsah", 
        "givenName": "Tarik", 
        "id": "sg:person.01270243015.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270243015.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, F-75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00e9onard", 
        "givenName": "Julian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, F-75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beugnon", 
        "givenName": "J\u00e9r\u00f4me", 
        "id": "sg:person.01230315165.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230315165.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, F-75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weitenberg", 
        "givenName": "Christof", 
        "id": "sg:person.01050133104.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050133104.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, F-75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dalibard", 
        "givenName": "Jean", 
        "id": "sg:person.01025140266.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025140266.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.83.2502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001018853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.2502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001018853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001312614", 
          "https://doi.org/10.1038/nphys1364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001312614", 
          "https://doi.org/10.1038/nphys1364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.3840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002344029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.3840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002344029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.230408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009399106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.230408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009399106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.074504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010370045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.074504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010370045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.013608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012235651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.013608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012235651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004864820016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016088374", 
          "https://doi.org/10.1023/a:1004864820016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.130401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017513074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.130401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017513074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.063612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027568502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.063612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027568502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.66.043608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028771615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.66.043608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028771615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031218791", 
          "https://doi.org/10.1038/nature04851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031218791", 
          "https://doi.org/10.1038/nature04851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031218791", 
          "https://doi.org/10.1038/nature04851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.260401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035435943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.260401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035435943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039295382", 
          "https://doi.org/10.1038/nature09722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.045601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042214611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.045601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042214611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.5186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042249143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.5186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042249143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043649443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043649443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.160401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045485411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.160401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045485411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.061601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046215394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.061601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046215394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.170401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047382020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.170401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047382020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.160405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047570421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.160405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047570421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.070402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050279952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.070402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050279952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.130401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052322940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.130401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052322940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.17.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.17.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.19.560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060770396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.19.560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060770396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.40.1727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.40.1727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.59.1001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.59.1001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839109"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09", 
    "datePublishedReg": "2012-09-01", 
    "description": "Owing to thermal fluctuations, two-dimensional (2D) systems cannot undergo a conventional phase transition associated with the breaking of a continuous symmetry1. Nevertheless they may exhibit a phase transition to a state with quasi-long-range order via the Berezinskii\u2013Kosterlitz\u2013Thouless (BKT) mechanism2. A paradigm example is the 2D Bose fluid, such as a liquid helium film3, which cannot condense at non-zero temperature although it becomes superfluid above a critical phase space density. The quasi-long-range coherence and the microscopic nature of the BKT transition were recently explored with ultracold atomic gases4,5,6. However, a direct observation of superfluidity in terms of frictionless flow is still missing for these systems. Here we probe the superfluidity of a 2D trapped Bose gas using a moving obstacle formed by a micrometre-sized laser beam. We find a dramatic variation of the response of the fluid, depending on its degree of degeneracy at the obstacle location.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys2378", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Superfluid behaviour of a two-dimensional Bose gas", 
    "pagination": "645", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3b2a9d47f2aeee4dc7b32c9e91a41b880d67fa52d6810e645b19c58ebba8856c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys2378"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012418899"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys2378", 
      "https://app.dimensions.ai/details/publication/pub.1012418899"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys2378"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys2378'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys2378'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys2378'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys2378'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys2378 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N97e7d6ceaaeb45dba5ec33d1066fa42e
4 schema:citation sg:pub.10.1023/a:1004864820016
5 sg:pub.10.1038/nature04851
6 sg:pub.10.1038/nature09722
7 sg:pub.10.1038/nphys1364
8 https://doi.org/10.1103/physreva.56.3840
9 https://doi.org/10.1103/physreva.62.061601
10 https://doi.org/10.1103/physreva.62.063612
11 https://doi.org/10.1103/physreva.63.045601
12 https://doi.org/10.1103/physreva.66.043608
13 https://doi.org/10.1103/physreva.70.013608
14 https://doi.org/10.1103/physrevlett.100.074504
15 https://doi.org/10.1103/physrevlett.102.170401
16 https://doi.org/10.1103/physrevlett.104.160401
17 https://doi.org/10.1103/physrevlett.105.230408
18 https://doi.org/10.1103/physrevlett.106.130401
19 https://doi.org/10.1103/physrevlett.107.130401
20 https://doi.org/10.1103/physrevlett.17.1133
21 https://doi.org/10.1103/physrevlett.19.560
22 https://doi.org/10.1103/physrevlett.40.1727
23 https://doi.org/10.1103/physrevlett.69.1644
24 https://doi.org/10.1103/physrevlett.82.5186
25 https://doi.org/10.1103/physrevlett.83.2502
26 https://doi.org/10.1103/physrevlett.85.2228
27 https://doi.org/10.1103/physrevlett.99.070402
28 https://doi.org/10.1103/physrevlett.99.160405
29 https://doi.org/10.1103/physrevlett.99.260401
30 https://doi.org/10.1103/revmodphys.59.1001
31 schema:datePublished 2012-09
32 schema:datePublishedReg 2012-09-01
33 schema:description Owing to thermal fluctuations, two-dimensional (2D) systems cannot undergo a conventional phase transition associated with the breaking of a continuous symmetry1. Nevertheless they may exhibit a phase transition to a state with quasi-long-range order via the Berezinskii–Kosterlitz–Thouless (BKT) mechanism2. A paradigm example is the 2D Bose fluid, such as a liquid helium film3, which cannot condense at non-zero temperature although it becomes superfluid above a critical phase space density. The quasi-long-range coherence and the microscopic nature of the BKT transition were recently explored with ultracold atomic gases4,5,6. However, a direct observation of superfluidity in terms of frictionless flow is still missing for these systems. Here we probe the superfluidity of a 2D trapped Bose gas using a moving obstacle formed by a micrometre-sized laser beam. We find a dramatic variation of the response of the fluid, depending on its degree of degeneracy at the obstacle location.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N1ea5a25d1b2f49d1931785a2168d1191
38 N2e780e363e704a958fb44cbad333af75
39 sg:journal.1034717
40 schema:name Superfluid behaviour of a two-dimensional Bose gas
41 schema:pagination 645
42 schema:productId N4f8fcd67bc3348b9842e0de90cd786ac
43 N62dec63182534e5a8809b7e78f155ffc
44 Nb313c50233ca4a2e812b90a646dbd42f
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012418899
46 https://doi.org/10.1038/nphys2378
47 schema:sdDatePublished 2019-04-10T14:49
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Naf1166e8943645e8aeb8953b23ebf785
50 schema:url https://www.nature.com/articles/nphys2378
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N1a9e90510b044bd6a565d7370e980932 rdf:first sg:person.01230315165.33
55 rdf:rest N7d64fde7519a4138a5d21a73fb8244c7
56 N1ea5a25d1b2f49d1931785a2168d1191 schema:issueNumber 9
57 rdf:type schema:PublicationIssue
58 N2e780e363e704a958fb44cbad333af75 schema:volumeNumber 8
59 rdf:type schema:PublicationVolume
60 N3c551d5b97ac48b59012782da3b1d134 rdf:first sg:person.01270243015.50
61 rdf:rest Nda8c3253156b476b9dc28bd61d583153
62 N4f8fcd67bc3348b9842e0de90cd786ac schema:name dimensions_id
63 schema:value pub.1012418899
64 rdf:type schema:PropertyValue
65 N50df1d0838e244be84f6a012d7ee9f1f schema:affiliation https://www.grid.ac/institutes/grid.4444.0
66 schema:familyName Léonard
67 schema:givenName Julian
68 rdf:type schema:Person
69 N542722265415414abf988088cee3067b rdf:first sg:person.0776515322.16
70 rdf:rest N3c551d5b97ac48b59012782da3b1d134
71 N62dec63182534e5a8809b7e78f155ffc schema:name readcube_id
72 schema:value 3b2a9d47f2aeee4dc7b32c9e91a41b880d67fa52d6810e645b19c58ebba8856c
73 rdf:type schema:PropertyValue
74 N7d64fde7519a4138a5d21a73fb8244c7 rdf:first sg:person.01050133104.11
75 rdf:rest Ndbcc112219fe478e93480ce0df403db9
76 N97e7d6ceaaeb45dba5ec33d1066fa42e rdf:first sg:person.0730402122.52
77 rdf:rest N542722265415414abf988088cee3067b
78 Naf1166e8943645e8aeb8953b23ebf785 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nb313c50233ca4a2e812b90a646dbd42f schema:name doi
81 schema:value 10.1038/nphys2378
82 rdf:type schema:PropertyValue
83 Nda8c3253156b476b9dc28bd61d583153 rdf:first N50df1d0838e244be84f6a012d7ee9f1f
84 rdf:rest N1a9e90510b044bd6a565d7370e980932
85 Ndbcc112219fe478e93480ce0df403db9 rdf:first sg:person.01025140266.24
86 rdf:rest rdf:nil
87 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
88 schema:name Physical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
91 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
92 rdf:type schema:DefinedTerm
93 sg:journal.1034717 schema:issn 1745-2473
94 1745-2481
95 schema:name Nature Physics
96 rdf:type schema:Periodical
97 sg:person.01025140266.24 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
98 schema:familyName Dalibard
99 schema:givenName Jean
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025140266.24
101 rdf:type schema:Person
102 sg:person.01050133104.11 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
103 schema:familyName Weitenberg
104 schema:givenName Christof
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050133104.11
106 rdf:type schema:Person
107 sg:person.01230315165.33 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
108 schema:familyName Beugnon
109 schema:givenName Jérôme
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230315165.33
111 rdf:type schema:Person
112 sg:person.01270243015.50 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
113 schema:familyName Yefsah
114 schema:givenName Tarik
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270243015.50
116 rdf:type schema:Person
117 sg:person.0730402122.52 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
118 schema:familyName Desbuquois
119 schema:givenName Rémi
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730402122.52
121 rdf:type schema:Person
122 sg:person.0776515322.16 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
123 schema:familyName Chomaz
124 schema:givenName Lauriane
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776515322.16
126 rdf:type schema:Person
127 sg:pub.10.1023/a:1004864820016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016088374
128 https://doi.org/10.1023/a:1004864820016
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nature04851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031218791
131 https://doi.org/10.1038/nature04851
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nature09722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039295382
134 https://doi.org/10.1038/nature09722
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nphys1364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001312614
137 https://doi.org/10.1038/nphys1364
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physreva.56.3840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002344029
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physreva.62.061601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046215394
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physreva.62.063612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027568502
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physreva.63.045601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042214611
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physreva.66.043608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028771615
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreva.70.013608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012235651
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.100.074504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010370045
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.102.170401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047382020
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.104.160401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045485411
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.105.230408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009399106
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.106.130401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052322940
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.107.130401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017513074
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.17.1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060769116
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.19.560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060770396
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.40.1727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060782589
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.69.1644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805285
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.82.5186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042249143
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.83.2502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001018853
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.85.2228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043649443
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.99.070402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050279952
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.99.160405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047570421
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.99.260401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035435943
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/revmodphys.59.1001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839109
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
186 schema:name Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Supérieure, 24 rue Lhomond, F-75005 Paris, France
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...