Emergent electrodynamics of skyrmions in a chiral magnet View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-04

AUTHORS

T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, A. Rosch

ABSTRACT

When an electron moves in a smoothly varying non-collinear magnetic structure, its spin orientation adapts constantly, thereby inducing forces that act both on the magnetic structure and on the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics1,2,3,4. The topologically quantized winding number of so-called skyrmions—a type of magnetic whirl discovered recently in chiral magnets5,6,7—has been predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faraday’s law of induction, which inherits this topological quantization8. Here we report Hall-effect measurements that establish quantitatively the predicted emergent electrodynamics. We obtain quantitative evidence for the depinning of skyrmions from impurities (at current densities of only 106 A m−2) and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between the emergent and real electrodynamics of skyrmions in chiral magnets, and might, in the long term, be important for applications. More... »

PAGES

301

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys2231

DOI

http://dx.doi.org/10.1038/nphys2231

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029936903


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulz", 
        "givenName": "T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ritz", 
        "givenName": "R.", 
        "id": "sg:person.01261233642.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261233642.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "A.", 
        "id": "sg:person.01332240064.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332240064.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halder", 
        "givenName": "M.", 
        "id": "sg:person.0766026172.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766026172.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "M.", 
        "id": "sg:person.015730064125.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730064125.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franz", 
        "givenName": "C.", 
        "id": "sg:person.0603742742.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603742742.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pfleiderer", 
        "givenName": "C.", 
        "id": "sg:person.0645154744.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154744.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Institute for Theoretical Physics, Universit\u00e4t zu K\u00f6ln, D-50937 K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Everschor", 
        "givenName": "K.", 
        "id": "sg:person.0612475064.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612475064.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Institute for Theoretical Physics, Universit\u00e4t zu K\u00f6ln, D-50937 K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garst", 
        "givenName": "M.", 
        "id": "sg:person.0726723464.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726723464.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Institute for Theoretical Physics, Universit\u00e4t zu K\u00f6ln, D-50937 K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosch", 
        "givenName": "A.", 
        "id": "sg:person.01262343435.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262343435.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00018730410001684197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001152048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/16/164207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005436705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/16/164207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005436705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.136804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006783661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.136804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006783661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1594841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008497141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014026693", 
          "https://doi.org/10.1038/nature07879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014026693", 
          "https://doi.org/10.1038/nature07879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017462081", 
          "https://doi.org/10.1038/nphys2045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/65/11/202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024206131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029452091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029452091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00654452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042950253", 
          "https://doi.org/10.1007/bf00654452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00654452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042950253", 
          "https://doi.org/10.1007/bf00654452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00654452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042950253", 
          "https://doi.org/10.1007/bf00654452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045611615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045611615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1578165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057722276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3523056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057967362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/20/7/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058964518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.064404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.064404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.067201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.067201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.217206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.217206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.246601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.246601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.66.1125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.66.1125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1195709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462778"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04", 
    "datePublishedReg": "2012-04-01", 
    "description": "When an electron moves in a smoothly varying non-collinear magnetic structure, its spin orientation adapts constantly, thereby inducing forces that act both on the magnetic structure and on the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics1,2,3,4. The topologically quantized winding number of so-called skyrmions\u2014a type of magnetic whirl discovered recently in chiral magnets5,6,7\u2014has been predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faraday\u2019s law of induction, which inherits this topological quantization8. Here we report Hall-effect measurements that establish quantitatively the predicted emergent electrodynamics. We obtain quantitative evidence for the depinning of skyrmions from impurities (at current densities of only 106 A m\u22122) and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between the emergent and real electrodynamics of skyrmions in chiral magnets, and might, in the long term, be important for applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys2231", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Emergent electrodynamics of skyrmions in a chiral magnet", 
    "pagination": "301", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8e9daf82551f7fdeead9a4f999f6b6a43144c177ad7d281502269a73e2ea3353"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys2231"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029936903"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys2231", 
      "https://app.dimensions.ai/details/publication/pub.1029936903"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys2231"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys2231'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys2231'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys2231'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys2231'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys2231 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N4f6eaf55f2f44408941eb611cf3f818d
4 schema:citation sg:pub.10.1007/bf00654452
5 sg:pub.10.1038/nature02441
6 sg:pub.10.1038/nature07879
7 sg:pub.10.1038/nature09124
8 sg:pub.10.1038/nphys2045
9 https://doi.org/10.1063/1.1578165
10 https://doi.org/10.1063/1.1594841
11 https://doi.org/10.1063/1.3523056
12 https://doi.org/10.1080/00018730410001684197
13 https://doi.org/10.1088/0022-3719/20/7/003
14 https://doi.org/10.1088/0034-4885/65/11/202
15 https://doi.org/10.1088/0953-8984/22/16/164207
16 https://doi.org/10.1103/physrevb.81.041203
17 https://doi.org/10.1103/physrevb.82.064404
18 https://doi.org/10.1103/physrevlett.102.067201
19 https://doi.org/10.1103/physrevlett.102.086601
20 https://doi.org/10.1103/physrevlett.102.186602
21 https://doi.org/10.1103/physrevlett.107.136804
22 https://doi.org/10.1103/physrevlett.107.217206
23 https://doi.org/10.1103/physrevlett.98.246601
24 https://doi.org/10.1103/revmodphys.66.1125
25 https://doi.org/10.1126/science.1166767
26 https://doi.org/10.1126/science.1195709
27 schema:datePublished 2012-04
28 schema:datePublishedReg 2012-04-01
29 schema:description When an electron moves in a smoothly varying non-collinear magnetic structure, its spin orientation adapts constantly, thereby inducing forces that act both on the magnetic structure and on the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics1,2,3,4. The topologically quantized winding number of so-called skyrmions—a type of magnetic whirl discovered recently in chiral magnets5,6,7—has been predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faraday’s law of induction, which inherits this topological quantization8. Here we report Hall-effect measurements that establish quantitatively the predicted emergent electrodynamics. We obtain quantitative evidence for the depinning of skyrmions from impurities (at current densities of only 106 A m−2) and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between the emergent and real electrodynamics of skyrmions in chiral magnets, and might, in the long term, be important for applications.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N1c50e4c5ebdc4a66a3058a643dd5f14e
34 N26517a568f0540a8ac42ecf5b3b7405d
35 sg:journal.1034717
36 schema:name Emergent electrodynamics of skyrmions in a chiral magnet
37 schema:pagination 301
38 schema:productId N10417165ec494fd8817addb67f24e304
39 N5c5da4ca56f94dceaae62cb8acf8bfc4
40 Ndb0777eba1374619b87fd17316c97ec1
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029936903
42 https://doi.org/10.1038/nphys2231
43 schema:sdDatePublished 2019-04-11T00:56
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nfd65f3032af144e986c20e1e722e51a4
46 schema:url https://www.nature.com/articles/nphys2231
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N072c91cb20ae4b168f4e844122263a8d rdf:first sg:person.01262343435.09
51 rdf:rest rdf:nil
52 N0b97a851c3a340f39aa66c6e65e36a76 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
53 schema:familyName Schulz
54 schema:givenName T.
55 rdf:type schema:Person
56 N0dcd14650a51436ab5ec913fa44b415e rdf:first sg:person.01261233642.46
57 rdf:rest N54d46c1252a648c8852c165ceb376b18
58 N10417165ec494fd8817addb67f24e304 schema:name readcube_id
59 schema:value 8e9daf82551f7fdeead9a4f999f6b6a43144c177ad7d281502269a73e2ea3353
60 rdf:type schema:PropertyValue
61 N1c50e4c5ebdc4a66a3058a643dd5f14e schema:volumeNumber 8
62 rdf:type schema:PublicationVolume
63 N26517a568f0540a8ac42ecf5b3b7405d schema:issueNumber 4
64 rdf:type schema:PublicationIssue
65 N46bcebb638264e4bbea064065e58a35f rdf:first sg:person.0726723464.41
66 rdf:rest N072c91cb20ae4b168f4e844122263a8d
67 N4f6eaf55f2f44408941eb611cf3f818d rdf:first N0b97a851c3a340f39aa66c6e65e36a76
68 rdf:rest N0dcd14650a51436ab5ec913fa44b415e
69 N54d46c1252a648c8852c165ceb376b18 rdf:first sg:person.01332240064.41
70 rdf:rest Ndbdd05b632614e9297a609786a03b800
71 N5c5da4ca56f94dceaae62cb8acf8bfc4 schema:name dimensions_id
72 schema:value pub.1029936903
73 rdf:type schema:PropertyValue
74 N8ae7482624c44d26a400f265f7e84774 rdf:first sg:person.0645154744.12
75 rdf:rest Nc745569498b646ecadfdb7fbd3ddb4d9
76 Nc745569498b646ecadfdb7fbd3ddb4d9 rdf:first sg:person.0612475064.76
77 rdf:rest N46bcebb638264e4bbea064065e58a35f
78 Ncf89329f1cbf4b95bbd3b4ad6b49e8b5 rdf:first sg:person.0603742742.63
79 rdf:rest N8ae7482624c44d26a400f265f7e84774
80 Ndb0777eba1374619b87fd17316c97ec1 schema:name doi
81 schema:value 10.1038/nphys2231
82 rdf:type schema:PropertyValue
83 Ndbdd05b632614e9297a609786a03b800 rdf:first sg:person.0766026172.69
84 rdf:rest Nddac1901ed43468d92645b0e2c1343b8
85 Nddac1901ed43468d92645b0e2c1343b8 rdf:first sg:person.015730064125.44
86 rdf:rest Ncf89329f1cbf4b95bbd3b4ad6b49e8b5
87 Nfd65f3032af144e986c20e1e722e51a4 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
90 schema:name Physical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
93 schema:name Other Physical Sciences
94 rdf:type schema:DefinedTerm
95 sg:journal.1034717 schema:issn 1745-2473
96 1745-2481
97 schema:name Nature Physics
98 rdf:type schema:Periodical
99 sg:person.01261233642.46 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
100 schema:familyName Ritz
101 schema:givenName R.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261233642.46
103 rdf:type schema:Person
104 sg:person.01262343435.09 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
105 schema:familyName Rosch
106 schema:givenName A.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262343435.09
108 rdf:type schema:Person
109 sg:person.01332240064.41 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
110 schema:familyName Bauer
111 schema:givenName A.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332240064.41
113 rdf:type schema:Person
114 sg:person.015730064125.44 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
115 schema:familyName Wagner
116 schema:givenName M.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730064125.44
118 rdf:type schema:Person
119 sg:person.0603742742.63 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
120 schema:familyName Franz
121 schema:givenName C.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603742742.63
123 rdf:type schema:Person
124 sg:person.0612475064.76 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
125 schema:familyName Everschor
126 schema:givenName K.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612475064.76
128 rdf:type schema:Person
129 sg:person.0645154744.12 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
130 schema:familyName Pfleiderer
131 schema:givenName C.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154744.12
133 rdf:type schema:Person
134 sg:person.0726723464.41 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
135 schema:familyName Garst
136 schema:givenName M.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726723464.41
138 rdf:type schema:Person
139 sg:person.0766026172.69 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
140 schema:familyName Halder
141 schema:givenName M.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766026172.69
143 rdf:type schema:Person
144 sg:pub.10.1007/bf00654452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042950253
145 https://doi.org/10.1007/bf00654452
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature02441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032107810
148 https://doi.org/10.1038/nature02441
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature07879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014026693
151 https://doi.org/10.1038/nature07879
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
154 https://doi.org/10.1038/nature09124
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nphys2045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017462081
157 https://doi.org/10.1038/nphys2045
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.1578165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057722276
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.1594841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008497141
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1063/1.3523056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057967362
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1080/00018730410001684197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001152048
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/0022-3719/20/7/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058964518
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/0034-4885/65/11/202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024206131
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1088/0953-8984/22/16/164207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005436705
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevb.81.041203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029452091
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevb.82.064404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060633374
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.102.067201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754805
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.102.086601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754882
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.102.186602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045611615
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.107.136804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006783661
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.107.217206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759069
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.98.246601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834184
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/revmodphys.66.1125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839310
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.1195709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462778
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.6190.e schema:alternateName University of Cologne
196 schema:name Institute for Theoretical Physics, Universität zu Köln, D-50937 Köln, Germany
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
199 schema:name Physik Department E21, Technische Universität München, D-85748 Garching, Germany
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...