Emergent electrodynamics of skyrmions in a chiral magnet View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-04

AUTHORS

T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, A. Rosch

ABSTRACT

When an electron moves in a smoothly varying non-collinear magnetic structure, its spin orientation adapts constantly, thereby inducing forces that act both on the magnetic structure and on the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics1,2,3,4. The topologically quantized winding number of so-called skyrmions—a type of magnetic whirl discovered recently in chiral magnets5,6,7—has been predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faraday’s law of induction, which inherits this topological quantization8. Here we report Hall-effect measurements that establish quantitatively the predicted emergent electrodynamics. We obtain quantitative evidence for the depinning of skyrmions from impurities (at current densities of only 106 A m−2) and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between the emergent and real electrodynamics of skyrmions in chiral magnets, and might, in the long term, be important for applications. More... »

PAGES

301

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys2231

DOI

http://dx.doi.org/10.1038/nphys2231

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029936903


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulz", 
        "givenName": "T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ritz", 
        "givenName": "R.", 
        "id": "sg:person.01261233642.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261233642.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "A.", 
        "id": "sg:person.01332240064.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332240064.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halder", 
        "givenName": "M.", 
        "id": "sg:person.0766026172.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766026172.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "M.", 
        "id": "sg:person.015730064125.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730064125.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franz", 
        "givenName": "C.", 
        "id": "sg:person.0603742742.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603742742.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pfleiderer", 
        "givenName": "C.", 
        "id": "sg:person.0645154744.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154744.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Institute for Theoretical Physics, Universit\u00e4t zu K\u00f6ln, D-50937 K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Everschor", 
        "givenName": "K.", 
        "id": "sg:person.0612475064.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612475064.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Institute for Theoretical Physics, Universit\u00e4t zu K\u00f6ln, D-50937 K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garst", 
        "givenName": "M.", 
        "id": "sg:person.0726723464.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726723464.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Institute for Theoretical Physics, Universit\u00e4t zu K\u00f6ln, D-50937 K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosch", 
        "givenName": "A.", 
        "id": "sg:person.01262343435.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262343435.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00018730410001684197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001152048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/16/164207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005436705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/16/164207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005436705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.136804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006783661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.136804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006783661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1594841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008497141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014026693", 
          "https://doi.org/10.1038/nature07879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014026693", 
          "https://doi.org/10.1038/nature07879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017462081", 
          "https://doi.org/10.1038/nphys2045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/65/11/202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024206131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029452091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029452091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00654452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042950253", 
          "https://doi.org/10.1007/bf00654452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00654452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042950253", 
          "https://doi.org/10.1007/bf00654452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00654452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042950253", 
          "https://doi.org/10.1007/bf00654452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045611615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045611615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1578165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057722276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3523056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057967362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/20/7/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058964518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.064404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.064404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.067201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.067201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.217206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.217206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.246601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.246601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.66.1125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.66.1125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1195709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462778"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04", 
    "datePublishedReg": "2012-04-01", 
    "description": "When an electron moves in a smoothly varying non-collinear magnetic structure, its spin orientation adapts constantly, thereby inducing forces that act both on the magnetic structure and on the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics1,2,3,4. The topologically quantized winding number of so-called skyrmions\u2014a type of magnetic whirl discovered recently in chiral magnets5,6,7\u2014has been predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faraday\u2019s law of induction, which inherits this topological quantization8. Here we report Hall-effect measurements that establish quantitatively the predicted emergent electrodynamics. We obtain quantitative evidence for the depinning of skyrmions from impurities (at current densities of only 106 A m\u22122) and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between the emergent and real electrodynamics of skyrmions in chiral magnets, and might, in the long term, be important for applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys2231", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Emergent electrodynamics of skyrmions in a chiral magnet", 
    "pagination": "301", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8e9daf82551f7fdeead9a4f999f6b6a43144c177ad7d281502269a73e2ea3353"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys2231"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029936903"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys2231", 
      "https://app.dimensions.ai/details/publication/pub.1029936903"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys2231"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys2231'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys2231'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys2231'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys2231'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys2231 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N05bd1bfac3ca49c5bc747c0f545f7315
4 schema:citation sg:pub.10.1007/bf00654452
5 sg:pub.10.1038/nature02441
6 sg:pub.10.1038/nature07879
7 sg:pub.10.1038/nature09124
8 sg:pub.10.1038/nphys2045
9 https://doi.org/10.1063/1.1578165
10 https://doi.org/10.1063/1.1594841
11 https://doi.org/10.1063/1.3523056
12 https://doi.org/10.1080/00018730410001684197
13 https://doi.org/10.1088/0022-3719/20/7/003
14 https://doi.org/10.1088/0034-4885/65/11/202
15 https://doi.org/10.1088/0953-8984/22/16/164207
16 https://doi.org/10.1103/physrevb.81.041203
17 https://doi.org/10.1103/physrevb.82.064404
18 https://doi.org/10.1103/physrevlett.102.067201
19 https://doi.org/10.1103/physrevlett.102.086601
20 https://doi.org/10.1103/physrevlett.102.186602
21 https://doi.org/10.1103/physrevlett.107.136804
22 https://doi.org/10.1103/physrevlett.107.217206
23 https://doi.org/10.1103/physrevlett.98.246601
24 https://doi.org/10.1103/revmodphys.66.1125
25 https://doi.org/10.1126/science.1166767
26 https://doi.org/10.1126/science.1195709
27 schema:datePublished 2012-04
28 schema:datePublishedReg 2012-04-01
29 schema:description When an electron moves in a smoothly varying non-collinear magnetic structure, its spin orientation adapts constantly, thereby inducing forces that act both on the magnetic structure and on the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics1,2,3,4. The topologically quantized winding number of so-called skyrmions—a type of magnetic whirl discovered recently in chiral magnets5,6,7—has been predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faraday’s law of induction, which inherits this topological quantization8. Here we report Hall-effect measurements that establish quantitatively the predicted emergent electrodynamics. We obtain quantitative evidence for the depinning of skyrmions from impurities (at current densities of only 106 A m−2) and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between the emergent and real electrodynamics of skyrmions in chiral magnets, and might, in the long term, be important for applications.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N5b9ba215a435420e8b81fb7806b0ceee
34 N8fb7e64e19094bfbb7220abab31fe5e3
35 sg:journal.1034717
36 schema:name Emergent electrodynamics of skyrmions in a chiral magnet
37 schema:pagination 301
38 schema:productId N5958a4a9b5ec462cb9856fac07f2a3f3
39 Ndabce130084f4808af7be7d5f3e2546b
40 Nf58f62770059450abe9ef9909d7f1d92
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029936903
42 https://doi.org/10.1038/nphys2231
43 schema:sdDatePublished 2019-04-11T00:56
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N039eeaa1d2b441c6b648c7436d6217bf
46 schema:url https://www.nature.com/articles/nphys2231
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N039eeaa1d2b441c6b648c7436d6217bf schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N05bd1bfac3ca49c5bc747c0f545f7315 rdf:first Nf65e803aac2f4c97854ee1c3d6b882f3
53 rdf:rest Nb02dd45d82cd483db5de51c247c356f6
54 N09e9902447464ca58adb3a76fd744cae rdf:first sg:person.0766026172.69
55 rdf:rest Nf0563949ff204972b713dc41fcfb0ea8
56 N3d48ebdf8ffe40b29061fde208a3e10b rdf:first sg:person.0612475064.76
57 rdf:rest Nb5b396d0057c45c2b70390efba0f8987
58 N58eb11ec3ef4456d81868ec0290a7901 rdf:first sg:person.01262343435.09
59 rdf:rest rdf:nil
60 N5958a4a9b5ec462cb9856fac07f2a3f3 schema:name doi
61 schema:value 10.1038/nphys2231
62 rdf:type schema:PropertyValue
63 N5b9ba215a435420e8b81fb7806b0ceee schema:issueNumber 4
64 rdf:type schema:PublicationIssue
65 N636df652609b4bd88ee4918b345d1913 rdf:first sg:person.01332240064.41
66 rdf:rest N09e9902447464ca58adb3a76fd744cae
67 N6dac70ffe85f416d9e50b5b9fcb18e7a rdf:first sg:person.0645154744.12
68 rdf:rest N3d48ebdf8ffe40b29061fde208a3e10b
69 N78cee12282354d8cb35a4f92c7e10e01 rdf:first sg:person.0603742742.63
70 rdf:rest N6dac70ffe85f416d9e50b5b9fcb18e7a
71 N8fb7e64e19094bfbb7220abab31fe5e3 schema:volumeNumber 8
72 rdf:type schema:PublicationVolume
73 Nb02dd45d82cd483db5de51c247c356f6 rdf:first sg:person.01261233642.46
74 rdf:rest N636df652609b4bd88ee4918b345d1913
75 Nb5b396d0057c45c2b70390efba0f8987 rdf:first sg:person.0726723464.41
76 rdf:rest N58eb11ec3ef4456d81868ec0290a7901
77 Ndabce130084f4808af7be7d5f3e2546b schema:name dimensions_id
78 schema:value pub.1029936903
79 rdf:type schema:PropertyValue
80 Nf0563949ff204972b713dc41fcfb0ea8 rdf:first sg:person.015730064125.44
81 rdf:rest N78cee12282354d8cb35a4f92c7e10e01
82 Nf58f62770059450abe9ef9909d7f1d92 schema:name readcube_id
83 schema:value 8e9daf82551f7fdeead9a4f999f6b6a43144c177ad7d281502269a73e2ea3353
84 rdf:type schema:PropertyValue
85 Nf65e803aac2f4c97854ee1c3d6b882f3 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
86 schema:familyName Schulz
87 schema:givenName T.
88 rdf:type schema:Person
89 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
90 schema:name Physical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
93 schema:name Other Physical Sciences
94 rdf:type schema:DefinedTerm
95 sg:journal.1034717 schema:issn 1745-2473
96 1745-2481
97 schema:name Nature Physics
98 rdf:type schema:Periodical
99 sg:person.01261233642.46 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
100 schema:familyName Ritz
101 schema:givenName R.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261233642.46
103 rdf:type schema:Person
104 sg:person.01262343435.09 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
105 schema:familyName Rosch
106 schema:givenName A.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262343435.09
108 rdf:type schema:Person
109 sg:person.01332240064.41 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
110 schema:familyName Bauer
111 schema:givenName A.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332240064.41
113 rdf:type schema:Person
114 sg:person.015730064125.44 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
115 schema:familyName Wagner
116 schema:givenName M.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730064125.44
118 rdf:type schema:Person
119 sg:person.0603742742.63 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
120 schema:familyName Franz
121 schema:givenName C.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603742742.63
123 rdf:type schema:Person
124 sg:person.0612475064.76 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
125 schema:familyName Everschor
126 schema:givenName K.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612475064.76
128 rdf:type schema:Person
129 sg:person.0645154744.12 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
130 schema:familyName Pfleiderer
131 schema:givenName C.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154744.12
133 rdf:type schema:Person
134 sg:person.0726723464.41 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
135 schema:familyName Garst
136 schema:givenName M.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726723464.41
138 rdf:type schema:Person
139 sg:person.0766026172.69 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
140 schema:familyName Halder
141 schema:givenName M.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766026172.69
143 rdf:type schema:Person
144 sg:pub.10.1007/bf00654452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042950253
145 https://doi.org/10.1007/bf00654452
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature02441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032107810
148 https://doi.org/10.1038/nature02441
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature07879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014026693
151 https://doi.org/10.1038/nature07879
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
154 https://doi.org/10.1038/nature09124
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nphys2045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017462081
157 https://doi.org/10.1038/nphys2045
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.1578165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057722276
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.1594841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008497141
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1063/1.3523056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057967362
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1080/00018730410001684197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001152048
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/0022-3719/20/7/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058964518
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/0034-4885/65/11/202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024206131
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1088/0953-8984/22/16/164207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005436705
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevb.81.041203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029452091
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevb.82.064404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060633374
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.102.067201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754805
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.102.086601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754882
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.102.186602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045611615
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.107.136804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006783661
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.107.217206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759069
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.98.246601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834184
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/revmodphys.66.1125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839310
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.1195709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462778
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.6190.e schema:alternateName University of Cologne
196 schema:name Institute for Theoretical Physics, Universität zu Köln, D-50937 Köln, Germany
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
199 schema:name Physik Department E21, Technische Universität München, D-85748 Garching, Germany
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...