Emergent electrodynamics of skyrmions in a chiral magnet View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-04

AUTHORS

T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, A. Rosch

ABSTRACT

When an electron moves in a smoothly varying non-collinear magnetic structure, its spin orientation adapts constantly, thereby inducing forces that act both on the magnetic structure and on the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics1,2,3,4. The topologically quantized winding number of so-called skyrmions—a type of magnetic whirl discovered recently in chiral magnets5,6,7—has been predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faraday’s law of induction, which inherits this topological quantization8. Here we report Hall-effect measurements that establish quantitatively the predicted emergent electrodynamics. We obtain quantitative evidence for the depinning of skyrmions from impurities (at current densities of only 106 A m−2) and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between the emergent and real electrodynamics of skyrmions in chiral magnets, and might, in the long term, be important for applications. More... »

PAGES

301

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys2231

DOI

http://dx.doi.org/10.1038/nphys2231

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029936903


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulz", 
        "givenName": "T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ritz", 
        "givenName": "R.", 
        "id": "sg:person.01261233642.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261233642.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "A.", 
        "id": "sg:person.01332240064.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332240064.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halder", 
        "givenName": "M.", 
        "id": "sg:person.0766026172.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766026172.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "M.", 
        "id": "sg:person.015730064125.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730064125.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franz", 
        "givenName": "C.", 
        "id": "sg:person.0603742742.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603742742.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pfleiderer", 
        "givenName": "C.", 
        "id": "sg:person.0645154744.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154744.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Institute for Theoretical Physics, Universit\u00e4t zu K\u00f6ln, D-50937 K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Everschor", 
        "givenName": "K.", 
        "id": "sg:person.0612475064.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612475064.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Institute for Theoretical Physics, Universit\u00e4t zu K\u00f6ln, D-50937 K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garst", 
        "givenName": "M.", 
        "id": "sg:person.0726723464.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726723464.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Institute for Theoretical Physics, Universit\u00e4t zu K\u00f6ln, D-50937 K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosch", 
        "givenName": "A.", 
        "id": "sg:person.01262343435.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262343435.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00018730410001684197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001152048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/16/164207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005436705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/16/164207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005436705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.136804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006783661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.136804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006783661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1594841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008497141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014026693", 
          "https://doi.org/10.1038/nature07879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014026693", 
          "https://doi.org/10.1038/nature07879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017462081", 
          "https://doi.org/10.1038/nphys2045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/65/11/202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024206131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029452091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029452091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00654452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042950253", 
          "https://doi.org/10.1007/bf00654452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00654452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042950253", 
          "https://doi.org/10.1007/bf00654452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00654452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042950253", 
          "https://doi.org/10.1007/bf00654452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045611615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045611615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1578165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057722276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3523056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057967362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/20/7/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058964518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.064404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.064404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.067201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.067201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.217206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.217206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.246601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.246601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.66.1125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.66.1125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1195709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462778"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04", 
    "datePublishedReg": "2012-04-01", 
    "description": "When an electron moves in a smoothly varying non-collinear magnetic structure, its spin orientation adapts constantly, thereby inducing forces that act both on the magnetic structure and on the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics1,2,3,4. The topologically quantized winding number of so-called skyrmions\u2014a type of magnetic whirl discovered recently in chiral magnets5,6,7\u2014has been predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faraday\u2019s law of induction, which inherits this topological quantization8. Here we report Hall-effect measurements that establish quantitatively the predicted emergent electrodynamics. We obtain quantitative evidence for the depinning of skyrmions from impurities (at current densities of only 106 A m\u22122) and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between the emergent and real electrodynamics of skyrmions in chiral magnets, and might, in the long term, be important for applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys2231", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Emergent electrodynamics of skyrmions in a chiral magnet", 
    "pagination": "301", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8e9daf82551f7fdeead9a4f999f6b6a43144c177ad7d281502269a73e2ea3353"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys2231"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029936903"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys2231", 
      "https://app.dimensions.ai/details/publication/pub.1029936903"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys2231"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys2231'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys2231'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys2231'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys2231'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys2231 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N6d4f09de2097480f87b742d92db83b8f
4 schema:citation sg:pub.10.1007/bf00654452
5 sg:pub.10.1038/nature02441
6 sg:pub.10.1038/nature07879
7 sg:pub.10.1038/nature09124
8 sg:pub.10.1038/nphys2045
9 https://doi.org/10.1063/1.1578165
10 https://doi.org/10.1063/1.1594841
11 https://doi.org/10.1063/1.3523056
12 https://doi.org/10.1080/00018730410001684197
13 https://doi.org/10.1088/0022-3719/20/7/003
14 https://doi.org/10.1088/0034-4885/65/11/202
15 https://doi.org/10.1088/0953-8984/22/16/164207
16 https://doi.org/10.1103/physrevb.81.041203
17 https://doi.org/10.1103/physrevb.82.064404
18 https://doi.org/10.1103/physrevlett.102.067201
19 https://doi.org/10.1103/physrevlett.102.086601
20 https://doi.org/10.1103/physrevlett.102.186602
21 https://doi.org/10.1103/physrevlett.107.136804
22 https://doi.org/10.1103/physrevlett.107.217206
23 https://doi.org/10.1103/physrevlett.98.246601
24 https://doi.org/10.1103/revmodphys.66.1125
25 https://doi.org/10.1126/science.1166767
26 https://doi.org/10.1126/science.1195709
27 schema:datePublished 2012-04
28 schema:datePublishedReg 2012-04-01
29 schema:description When an electron moves in a smoothly varying non-collinear magnetic structure, its spin orientation adapts constantly, thereby inducing forces that act both on the magnetic structure and on the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics1,2,3,4. The topologically quantized winding number of so-called skyrmions—a type of magnetic whirl discovered recently in chiral magnets5,6,7—has been predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faraday’s law of induction, which inherits this topological quantization8. Here we report Hall-effect measurements that establish quantitatively the predicted emergent electrodynamics. We obtain quantitative evidence for the depinning of skyrmions from impurities (at current densities of only 106 A m−2) and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between the emergent and real electrodynamics of skyrmions in chiral magnets, and might, in the long term, be important for applications.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf Nc6b22ea17ff0451ca8baff6b8ce52917
34 Ne11e55eca1e74fbf85f0e567b04d27b2
35 sg:journal.1034717
36 schema:name Emergent electrodynamics of skyrmions in a chiral magnet
37 schema:pagination 301
38 schema:productId N4f6beda3a6094159b20ef93373629414
39 N803e5b99cdc246a6ad5557e079c2309b
40 Nb03bcce6723145d7ae64d679a573e835
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029936903
42 https://doi.org/10.1038/nphys2231
43 schema:sdDatePublished 2019-04-11T00:56
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N047b1c87e04340e5a6305dab5e0ba738
46 schema:url https://www.nature.com/articles/nphys2231
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N047b1c87e04340e5a6305dab5e0ba738 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N3b439aab71484c8492424118a470982a rdf:first sg:person.0645154744.12
53 rdf:rest N66ff1a374b9f4af4a67bccd0db7c6489
54 N48df67e23a97474daee7cb1c0849cd57 rdf:first sg:person.0726723464.41
55 rdf:rest Nde8bbb5e0e9c4a33a7e089713f8c7db4
56 N4f6beda3a6094159b20ef93373629414 schema:name doi
57 schema:value 10.1038/nphys2231
58 rdf:type schema:PropertyValue
59 N66ff1a374b9f4af4a67bccd0db7c6489 rdf:first sg:person.0612475064.76
60 rdf:rest N48df67e23a97474daee7cb1c0849cd57
61 N6d4f09de2097480f87b742d92db83b8f rdf:first N9591608649524841acabfbc48c40585d
62 rdf:rest Nbda8e4963755451390b7d8c00afedc3f
63 N803e5b99cdc246a6ad5557e079c2309b schema:name readcube_id
64 schema:value 8e9daf82551f7fdeead9a4f999f6b6a43144c177ad7d281502269a73e2ea3353
65 rdf:type schema:PropertyValue
66 N9591608649524841acabfbc48c40585d schema:affiliation https://www.grid.ac/institutes/grid.6936.a
67 schema:familyName Schulz
68 schema:givenName T.
69 rdf:type schema:Person
70 Na776dcd106ad4106aa91e4946007ac87 rdf:first sg:person.0766026172.69
71 rdf:rest Nc7712d0062894c9b8ce67d3f64f7b121
72 Nb03bcce6723145d7ae64d679a573e835 schema:name dimensions_id
73 schema:value pub.1029936903
74 rdf:type schema:PropertyValue
75 Nbda8e4963755451390b7d8c00afedc3f rdf:first sg:person.01261233642.46
76 rdf:rest Nd49dfbacba484ea79dcde6807e3d6062
77 Nc6b22ea17ff0451ca8baff6b8ce52917 schema:volumeNumber 8
78 rdf:type schema:PublicationVolume
79 Nc7712d0062894c9b8ce67d3f64f7b121 rdf:first sg:person.015730064125.44
80 rdf:rest Ned8ca66e26724230868f037f5bc170e6
81 Nd49dfbacba484ea79dcde6807e3d6062 rdf:first sg:person.01332240064.41
82 rdf:rest Na776dcd106ad4106aa91e4946007ac87
83 Nde8bbb5e0e9c4a33a7e089713f8c7db4 rdf:first sg:person.01262343435.09
84 rdf:rest rdf:nil
85 Ne11e55eca1e74fbf85f0e567b04d27b2 schema:issueNumber 4
86 rdf:type schema:PublicationIssue
87 Ned8ca66e26724230868f037f5bc170e6 rdf:first sg:person.0603742742.63
88 rdf:rest N3b439aab71484c8492424118a470982a
89 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
90 schema:name Physical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
93 schema:name Other Physical Sciences
94 rdf:type schema:DefinedTerm
95 sg:journal.1034717 schema:issn 1745-2473
96 1745-2481
97 schema:name Nature Physics
98 rdf:type schema:Periodical
99 sg:person.01261233642.46 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
100 schema:familyName Ritz
101 schema:givenName R.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261233642.46
103 rdf:type schema:Person
104 sg:person.01262343435.09 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
105 schema:familyName Rosch
106 schema:givenName A.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262343435.09
108 rdf:type schema:Person
109 sg:person.01332240064.41 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
110 schema:familyName Bauer
111 schema:givenName A.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332240064.41
113 rdf:type schema:Person
114 sg:person.015730064125.44 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
115 schema:familyName Wagner
116 schema:givenName M.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730064125.44
118 rdf:type schema:Person
119 sg:person.0603742742.63 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
120 schema:familyName Franz
121 schema:givenName C.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603742742.63
123 rdf:type schema:Person
124 sg:person.0612475064.76 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
125 schema:familyName Everschor
126 schema:givenName K.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612475064.76
128 rdf:type schema:Person
129 sg:person.0645154744.12 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
130 schema:familyName Pfleiderer
131 schema:givenName C.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154744.12
133 rdf:type schema:Person
134 sg:person.0726723464.41 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
135 schema:familyName Garst
136 schema:givenName M.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726723464.41
138 rdf:type schema:Person
139 sg:person.0766026172.69 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
140 schema:familyName Halder
141 schema:givenName M.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766026172.69
143 rdf:type schema:Person
144 sg:pub.10.1007/bf00654452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042950253
145 https://doi.org/10.1007/bf00654452
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature02441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032107810
148 https://doi.org/10.1038/nature02441
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature07879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014026693
151 https://doi.org/10.1038/nature07879
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
154 https://doi.org/10.1038/nature09124
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nphys2045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017462081
157 https://doi.org/10.1038/nphys2045
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.1578165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057722276
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.1594841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008497141
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1063/1.3523056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057967362
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1080/00018730410001684197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001152048
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/0022-3719/20/7/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058964518
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/0034-4885/65/11/202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024206131
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1088/0953-8984/22/16/164207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005436705
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevb.81.041203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029452091
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevb.82.064404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060633374
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.102.067201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754805
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.102.086601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754882
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.102.186602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045611615
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.107.136804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006783661
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.107.217206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759069
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.98.246601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834184
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/revmodphys.66.1125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839310
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.1195709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462778
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.6190.e schema:alternateName University of Cologne
196 schema:name Institute for Theoretical Physics, Universität zu Köln, D-50937 Köln, Germany
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
199 schema:name Physik Department E21, Technische Universität München, D-85748 Garching, Germany
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...