Chiral superconductivity from repulsive interactions in doped graphene View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-02

AUTHORS

Rahul Nandkishore, L. S. Levitov, A. V. Chubukov

ABSTRACT

Chiral superconductivity, which breaks time-reversal symmetry, can exhibit a wealth of fascinating properties that are highly sought after for nanoscience applications. We identify doped graphene monolayer as a system where chiral superconductivity can be realized. In this material, a unique situation arises at a doping where the Fermi surface is nested and the density of states is singular. In this regime, d-wave superconductivity can emerge from repulsive electron–electron interactions. Using a renormalization group method, we argue that superconductivity dominates over all competing orders for generic weak repulsive interactions. Superconductivity develops simultaneously in two degenerate d-wave pairing channels. We argue that the resulting superconducting state is of chiral type, with the phase of the superconducting order parameter winding by 4π around the Fermi surface. Realization of this state in doped graphene will prove that superconductivity can emerge from electron–electron repulsion, and will open the door to applications of chiral superconductivity. More... »

PAGES

158

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys2208

DOI

http://dx.doi.org/10.1038/nphys2208

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047312131


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nandkishore", 
        "givenName": "Rahul", 
        "id": "sg:person.01013037775.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013037775.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levitov", 
        "givenName": "L. S.", 
        "id": "sg:person.0605102273.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605102273.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chubukov", 
        "givenName": "A. V.", 
        "id": "sg:person.0632677101.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632677101.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.84.125404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000629235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.125404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000629235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10909-010-0199-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005045191", 
          "https://doi.org/10.1007/s10909-010-0199-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/1/31/025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005177973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006213153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006213153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.024504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008016241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.024504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008016241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.146404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009778222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.146404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009778222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.59.094019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011310164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.59.094019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011310164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.157003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011842617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.157003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011842617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015873393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015873393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.156402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017238792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.156402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017238792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physics.3.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018393250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physics.3.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018393250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.134512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019637828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.134512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019637828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.187001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019881673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.187001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019881673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.567563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021718547", 
          "https://doi.org/10.1134/1.567563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/10/11/113009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025280199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.096407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026401354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.096407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026401354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027522585", 
          "https://doi.org/10.1038/nmat2587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027522585", 
          "https://doi.org/10.1038/nmat2587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030191951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030191951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030223311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030223311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.4245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032645389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.4245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032645389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.035429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033533890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.035429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033533890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.214515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034801084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.214515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034801084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035660790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035660790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.205431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036884583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.205431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036884583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/97/37001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037515336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.214503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041924715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.214503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041924715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.085431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043688253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.085431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043688253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.134521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048687186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.134521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048687186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(88)90373-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050071972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(88)90373-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050071972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(91)90407-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052458791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(91)90407-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052458791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aop.2009.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053253731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.146801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053294137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.146801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053294137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.71.622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060453259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.71.622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060453259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.9667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.9667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.136803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.136803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.187003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.187003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.15.524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060768363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.15.524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060768363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.63.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.63.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/4/5/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064230931"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-02", 
    "datePublishedReg": "2012-02-01", 
    "description": "Chiral superconductivity, which breaks time-reversal symmetry, can exhibit a wealth of fascinating properties that are highly sought after for nanoscience applications. We identify doped graphene monolayer as a system where chiral superconductivity can be realized. In this material, a unique situation arises at a doping where the Fermi surface is nested and the density of states is singular. In this regime, d-wave superconductivity can emerge from repulsive electron\u2013electron interactions. Using a renormalization group method, we argue that superconductivity dominates over all competing orders for generic weak repulsive interactions. Superconductivity develops simultaneously in two degenerate d-wave pairing channels. We argue that the resulting superconducting state is of chiral type, with the phase of the superconducting order parameter winding by 4\u03c0 around the Fermi surface. Realization of this state in doped graphene will prove that superconductivity can emerge from electron\u2013electron repulsion, and will open the door to applications of chiral superconductivity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys2208", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Chiral superconductivity from repulsive interactions in doped graphene", 
    "pagination": "158", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e1616bb0f218f1377326a408867d1da1d95a9a217388f632ae8f05d7dae6441f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys2208"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047312131"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys2208", 
      "https://app.dimensions.ai/details/publication/pub.1047312131"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys2208"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys2208'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys2208'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys2208'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys2208'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys2208 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N83fa5cd720b94a93afd1cf8eaea6eb1c
4 schema:citation sg:pub.10.1007/s10909-010-0199-y
5 sg:pub.10.1038/nmat2587
6 sg:pub.10.1134/1.567563
7 https://doi.org/10.1016/0375-9601(88)90373-8
8 https://doi.org/10.1016/0550-3213(91)90407-o
9 https://doi.org/10.1016/j.aop.2009.02.004
10 https://doi.org/10.1088/0953-8984/1/31/025
11 https://doi.org/10.1088/1367-2630/10/11/113009
12 https://doi.org/10.1103/physics.3.1
13 https://doi.org/10.1103/physrev.71.622
14 https://doi.org/10.1103/physrevb.44.9667
15 https://doi.org/10.1103/physrevb.60.4245
16 https://doi.org/10.1103/physrevb.68.214503
17 https://doi.org/10.1103/physrevb.75.134512
18 https://doi.org/10.1103/physrevb.78.205431
19 https://doi.org/10.1103/physrevb.81.024504
20 https://doi.org/10.1103/physrevb.81.085431
21 https://doi.org/10.1103/physrevb.82.035429
22 https://doi.org/10.1103/physrevb.82.134521
23 https://doi.org/10.1103/physrevb.82.214515
24 https://doi.org/10.1103/physrevb.84.125404
25 https://doi.org/10.1103/physrevd.59.094019
26 https://doi.org/10.1103/physrevlett.100.096407
27 https://doi.org/10.1103/physrevlett.100.146404
28 https://doi.org/10.1103/physrevlett.101.156402
29 https://doi.org/10.1103/physrevlett.102.187001
30 https://doi.org/10.1103/physrevlett.104.136803
31 https://doi.org/10.1103/physrevlett.106.157003
32 https://doi.org/10.1103/physrevlett.106.187003
33 https://doi.org/10.1103/physrevlett.15.524
34 https://doi.org/10.1103/physrevlett.80.5188
35 https://doi.org/10.1103/physrevlett.81.3195
36 https://doi.org/10.1103/physrevlett.85.4940
37 https://doi.org/10.1103/physrevlett.86.268
38 https://doi.org/10.1103/physrevlett.98.146801
39 https://doi.org/10.1103/revmodphys.63.239
40 https://doi.org/10.1103/revmodphys.75.657
41 https://doi.org/10.1103/revmodphys.81.109
42 https://doi.org/10.1103/revmodphys.83.407
43 https://doi.org/10.1209/0295-5075/4/5/016
44 https://doi.org/10.1209/0295-5075/97/37001
45 schema:datePublished 2012-02
46 schema:datePublishedReg 2012-02-01
47 schema:description Chiral superconductivity, which breaks time-reversal symmetry, can exhibit a wealth of fascinating properties that are highly sought after for nanoscience applications. We identify doped graphene monolayer as a system where chiral superconductivity can be realized. In this material, a unique situation arises at a doping where the Fermi surface is nested and the density of states is singular. In this regime, d-wave superconductivity can emerge from repulsive electron–electron interactions. Using a renormalization group method, we argue that superconductivity dominates over all competing orders for generic weak repulsive interactions. Superconductivity develops simultaneously in two degenerate d-wave pairing channels. We argue that the resulting superconducting state is of chiral type, with the phase of the superconducting order parameter winding by 4π around the Fermi surface. Realization of this state in doped graphene will prove that superconductivity can emerge from electron–electron repulsion, and will open the door to applications of chiral superconductivity.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf Nb310961ad1d8427da5db24e116058776
52 Nffdb28afe5224e02a7868b80779bce39
53 sg:journal.1034717
54 schema:name Chiral superconductivity from repulsive interactions in doped graphene
55 schema:pagination 158
56 schema:productId N4b4da2e86c4744c0a3052695d10c8d0d
57 N99dc243a8b1741f5b122cffab49793af
58 Nc269877c686e4915a86ffed814525e84
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047312131
60 https://doi.org/10.1038/nphys2208
61 schema:sdDatePublished 2019-04-10T18:58
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Ndb91b8d7a9fa4616bf7deded928164cb
64 schema:url https://www.nature.com/articles/nphys2208
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N4b4da2e86c4744c0a3052695d10c8d0d schema:name doi
69 schema:value 10.1038/nphys2208
70 rdf:type schema:PropertyValue
71 N70acb2c8d1f14d9eb486c36662b1e7c4 rdf:first sg:person.0605102273.86
72 rdf:rest N9b3fed69b7d64009b39bee60b58348ec
73 N83fa5cd720b94a93afd1cf8eaea6eb1c rdf:first sg:person.01013037775.32
74 rdf:rest N70acb2c8d1f14d9eb486c36662b1e7c4
75 N99dc243a8b1741f5b122cffab49793af schema:name dimensions_id
76 schema:value pub.1047312131
77 rdf:type schema:PropertyValue
78 N9b3fed69b7d64009b39bee60b58348ec rdf:first sg:person.0632677101.95
79 rdf:rest rdf:nil
80 Nb310961ad1d8427da5db24e116058776 schema:issueNumber 2
81 rdf:type schema:PublicationIssue
82 Nc269877c686e4915a86ffed814525e84 schema:name readcube_id
83 schema:value e1616bb0f218f1377326a408867d1da1d95a9a217388f632ae8f05d7dae6441f
84 rdf:type schema:PropertyValue
85 Ndb91b8d7a9fa4616bf7deded928164cb schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nffdb28afe5224e02a7868b80779bce39 schema:volumeNumber 8
88 rdf:type schema:PublicationVolume
89 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
90 schema:name Engineering
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
93 schema:name Materials Engineering
94 rdf:type schema:DefinedTerm
95 sg:journal.1034717 schema:issn 1745-2473
96 1745-2481
97 schema:name Nature Physics
98 rdf:type schema:Periodical
99 sg:person.01013037775.32 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
100 schema:familyName Nandkishore
101 schema:givenName Rahul
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013037775.32
103 rdf:type schema:Person
104 sg:person.0605102273.86 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
105 schema:familyName Levitov
106 schema:givenName L. S.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605102273.86
108 rdf:type schema:Person
109 sg:person.0632677101.95 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
110 schema:familyName Chubukov
111 schema:givenName A. V.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632677101.95
113 rdf:type schema:Person
114 sg:pub.10.1007/s10909-010-0199-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005045191
115 https://doi.org/10.1007/s10909-010-0199-y
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nmat2587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027522585
118 https://doi.org/10.1038/nmat2587
119 rdf:type schema:CreativeWork
120 sg:pub.10.1134/1.567563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021718547
121 https://doi.org/10.1134/1.567563
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0375-9601(88)90373-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050071972
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0550-3213(91)90407-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1052458791
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.aop.2009.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053253731
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1088/0953-8984/1/31/025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005177973
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1088/1367-2630/10/11/113009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025280199
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physics.3.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018393250
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrev.71.622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060453259
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevb.44.9667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060560327
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevb.60.4245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032645389
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevb.68.214503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041924715
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.75.134512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019637828
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.78.205431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036884583
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.81.024504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008016241
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.81.085431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043688253
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.82.035429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033533890
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.82.134521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048687186
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.82.214515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034801084
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.84.125404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000629235
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevd.59.094019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011310164
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.100.096407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026401354
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.100.146404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009778222
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.101.156402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017238792
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.102.187001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019881673
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.104.136803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756784
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.106.157003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011842617
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.106.187003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060758278
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.15.524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060768363
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.80.5188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035660790
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.81.3195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006213153
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.85.4940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030191951
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.86.268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030223311
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.98.146801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053294137
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/revmodphys.63.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839218
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/revmodphys.75.657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839577
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/revmodphys.81.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408744
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/revmodphys.83.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015873393
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1209/0295-5075/4/5/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064230931
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1209/0295-5075/97/37001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037515336
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
200 schema:name Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
203 schema:name Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...