Detecting rich-club ordering in complex networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-02

AUTHORS

V. Colizza, A. Flammini, M. A. Serrano, A. Vespignani

ABSTRACT

Uncovering the hidden regularities and organizational principles of networks arising in physical systems ranging from the molecular level to the scale of large communication infrastructures is the key issue in understanding their fabric and dynamical properties1, 2, 3, 4, 5. The 'rich-club' phenomenon refers to the tendency of nodes with high centrality, the dominant elements of the system, to form tightly interconnected communities, and it is one of the crucial properties accounting for the formation of dominant communities in both computer and social sciences4, 5, 6, 7, 8. Here, we provide the analytical expression and the correct null models that allow for a quantitative discussion of the rich-club phenomenon. The presented analysis enables the measurement of the rich-club ordering and its relation with the function and dynamics of networks in examples drawn from the biological, social and technological domains. More... »

PAGES

110-115

References to SciGraph publications

  • 2004-03. Complex networks in THE EUROPEAN PHYSICAL JOURNAL B
  • 2004-03. Cut-offs and finite size effects in scale-free networks in THE EUROPEAN PHYSICAL JOURNAL B
  • 2005-02. Functional cartography of complex metabolic networks in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nphys209

    DOI

    http://dx.doi.org/10.1038/nphys209

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018047307


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Colizza", 
            "givenName": "V.", 
            "id": "sg:person.01342764336.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342764336.15"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Flammini", 
            "givenName": "A.", 
            "id": "sg:person.0645641315.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645641315.87"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Serrano", 
            "givenName": "M. A.", 
            "id": "sg:person.0640337661.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640337661.44"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Vespignani", 
            "givenName": "A.", 
            "id": "sg:person.01270211166.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270211166.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1073/pnas.0400087101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003759656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.74.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008594690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.74.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008594690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.286.5439.509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010080128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.208701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012572068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.208701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012572068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/epl/i2005-10574-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013341016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.67.026126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013919856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.67.026126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013919856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.64.016132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013982839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.64.016132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013982839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016416471", 
              "https://doi.org/10.1038/nature03288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016416471", 
              "https://doi.org/10.1038/nature03288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.258701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017006771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.258701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017006771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00018730110112519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019965146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2004-00110-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032650139", 
              "https://doi.org/10.1140/epjb/e2004-00110-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0407994102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034278078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2004.12.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037812664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.65.066130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038662419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.65.066130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038662419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2004-00038-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045137838", 
              "https://doi.org/10.1140/epjb/e2004-00038-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.68.036112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045283383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.68.036112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045283383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1065103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048235090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/rsa.3240060204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051332521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.64.016131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060727007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.64.016131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060727007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.268703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060825808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.268703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060825808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lcomm.2004.823426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061346611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1106340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062451305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s003614450342480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062877811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s003614450342480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062877811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/316194.316229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063167710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511610905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098666412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511815478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098700813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/acprof:oso/9780198515906.001.0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098793632"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-02", 
        "datePublishedReg": "2006-02-01", 
        "description": "Uncovering the hidden regularities and organizational principles of networks arising in physical systems ranging from the molecular level to the scale of large communication infrastructures is the key issue in understanding their fabric and dynamical properties1, 2, 3, 4, 5. The 'rich-club' phenomenon refers to the tendency of nodes with high centrality, the dominant elements of the system, to form tightly interconnected communities, and it is one of the crucial properties accounting for the formation of dominant communities in both computer and social sciences4, 5, 6, 7, 8. Here, we provide the analytical expression and the correct null models that allow for a quantitative discussion of the rich-club phenomenon. The presented analysis enables the measurement of the rich-club ordering and its relation with the function and dynamics of networks in examples drawn from the biological, social and technological domains.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nphys209", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3767969", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3058683", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1034717", 
            "issn": [
              "1745-2473", 
              "1745-2481"
            ], 
            "name": "Nature Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "name": "Detecting rich-club ordering in complex networks", 
        "pagination": "110-115", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "55fd65a4b31190f841d2ba92782a66824a5115aae14af90ada13249a6357f379"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nphys209"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018047307"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nphys209", 
          "https://app.dimensions.ai/details/publication/pub.1018047307"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29203_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nphys/journal/v2/n2/full/nphys209.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys209'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys209'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys209'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys209'


     

    This table displays all metadata directly associated to this object as RDF triples.

    163 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nphys209 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N97aee37b4a6f4765aa6e7705649f04e4
    4 schema:citation sg:pub.10.1038/nature03288
    5 sg:pub.10.1140/epjb/e2004-00038-8
    6 sg:pub.10.1140/epjb/e2004-00110-5
    7 https://doi.org/10.1002/rsa.3240060204
    8 https://doi.org/10.1016/j.physa.2004.12.030
    9 https://doi.org/10.1017/cbo9780511610905
    10 https://doi.org/10.1017/cbo9780511815478
    11 https://doi.org/10.1073/pnas.0400087101
    12 https://doi.org/10.1073/pnas.0407994102
    13 https://doi.org/10.1080/00018730110112519
    14 https://doi.org/10.1093/acprof:oso/9780198515906.001.0001
    15 https://doi.org/10.1103/physreve.64.016131
    16 https://doi.org/10.1103/physreve.64.016132
    17 https://doi.org/10.1103/physreve.65.066130
    18 https://doi.org/10.1103/physreve.67.026126
    19 https://doi.org/10.1103/physreve.68.036112
    20 https://doi.org/10.1103/physrevlett.87.258701
    21 https://doi.org/10.1103/physrevlett.89.208701
    22 https://doi.org/10.1103/physrevlett.89.268703
    23 https://doi.org/10.1103/revmodphys.74.47
    24 https://doi.org/10.1109/lcomm.2004.823426
    25 https://doi.org/10.1126/science.1065103
    26 https://doi.org/10.1126/science.1106340
    27 https://doi.org/10.1126/science.286.5439.509
    28 https://doi.org/10.1137/s003614450342480
    29 https://doi.org/10.1145/316194.316229
    30 https://doi.org/10.1209/epl/i2005-10574-3
    31 schema:datePublished 2006-02
    32 schema:datePublishedReg 2006-02-01
    33 schema:description Uncovering the hidden regularities and organizational principles of networks arising in physical systems ranging from the molecular level to the scale of large communication infrastructures is the key issue in understanding their fabric and dynamical properties1, 2, 3, 4, 5. The 'rich-club' phenomenon refers to the tendency of nodes with high centrality, the dominant elements of the system, to form tightly interconnected communities, and it is one of the crucial properties accounting for the formation of dominant communities in both computer and social sciences4, 5, 6, 7, 8. Here, we provide the analytical expression and the correct null models that allow for a quantitative discussion of the rich-club phenomenon. The presented analysis enables the measurement of the rich-club ordering and its relation with the function and dynamics of networks in examples drawn from the biological, social and technological domains.
    34 schema:genre research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N3aaad9a13f8d452b8173ecae1e24aaee
    38 Nbd39d86c5a6e40409eec9ca0a39dbf5d
    39 sg:journal.1034717
    40 schema:name Detecting rich-club ordering in complex networks
    41 schema:pagination 110-115
    42 schema:productId N1d581999340e42e3bac3d51c7c0a7ca8
    43 N29757be42dfc45d4b9889df80adf8b68
    44 Nf9999fcf531f4ff2b040e4b7269cf59e
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018047307
    46 https://doi.org/10.1038/nphys209
    47 schema:sdDatePublished 2019-04-11T11:54
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher Ncdf9c3196def4830a5ddc53d3aa0f301
    50 schema:url http://www.nature.com/nphys/journal/v2/n2/full/nphys209.html
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N1d581999340e42e3bac3d51c7c0a7ca8 schema:name dimensions_id
    55 schema:value pub.1018047307
    56 rdf:type schema:PropertyValue
    57 N29757be42dfc45d4b9889df80adf8b68 schema:name doi
    58 schema:value 10.1038/nphys209
    59 rdf:type schema:PropertyValue
    60 N2c933caa47464162a6a6b721bda0b88e rdf:first sg:person.01270211166.22
    61 rdf:rest rdf:nil
    62 N3aaad9a13f8d452b8173ecae1e24aaee schema:volumeNumber 2
    63 rdf:type schema:PublicationVolume
    64 N702d9a483f504308b7ebbc6b3c104fbf rdf:first sg:person.0645641315.87
    65 rdf:rest Nbd9420aca42143f7b05c30b735674ad9
    66 N97aee37b4a6f4765aa6e7705649f04e4 rdf:first sg:person.01342764336.15
    67 rdf:rest N702d9a483f504308b7ebbc6b3c104fbf
    68 Nbd39d86c5a6e40409eec9ca0a39dbf5d schema:issueNumber 2
    69 rdf:type schema:PublicationIssue
    70 Nbd9420aca42143f7b05c30b735674ad9 rdf:first sg:person.0640337661.44
    71 rdf:rest N2c933caa47464162a6a6b721bda0b88e
    72 Ncdf9c3196def4830a5ddc53d3aa0f301 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 Nf9999fcf531f4ff2b040e4b7269cf59e schema:name readcube_id
    75 schema:value 55fd65a4b31190f841d2ba92782a66824a5115aae14af90ada13249a6357f379
    76 rdf:type schema:PropertyValue
    77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Information and Computing Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Information Systems
    82 rdf:type schema:DefinedTerm
    83 sg:grant.3058683 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys209
    84 rdf:type schema:MonetaryGrant
    85 sg:grant.3767969 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys209
    86 rdf:type schema:MonetaryGrant
    87 sg:journal.1034717 schema:issn 1745-2473
    88 1745-2481
    89 schema:name Nature Physics
    90 rdf:type schema:Periodical
    91 sg:person.01270211166.22 schema:familyName Vespignani
    92 schema:givenName A.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270211166.22
    94 rdf:type schema:Person
    95 sg:person.01342764336.15 schema:familyName Colizza
    96 schema:givenName V.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342764336.15
    98 rdf:type schema:Person
    99 sg:person.0640337661.44 schema:familyName Serrano
    100 schema:givenName M. A.
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640337661.44
    102 rdf:type schema:Person
    103 sg:person.0645641315.87 schema:familyName Flammini
    104 schema:givenName A.
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645641315.87
    106 rdf:type schema:Person
    107 sg:pub.10.1038/nature03288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016416471
    108 https://doi.org/10.1038/nature03288
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1140/epjb/e2004-00038-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045137838
    111 https://doi.org/10.1140/epjb/e2004-00038-8
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1140/epjb/e2004-00110-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032650139
    114 https://doi.org/10.1140/epjb/e2004-00110-5
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1002/rsa.3240060204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051332521
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.physa.2004.12.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037812664
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1017/cbo9780511610905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098666412
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1017/cbo9780511815478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700813
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1073/pnas.0400087101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003759656
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1073/pnas.0407994102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034278078
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1080/00018730110112519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019965146
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1093/acprof:oso/9780198515906.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098793632
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1103/physreve.64.016131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060727007
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1103/physreve.64.016132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013982839
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1103/physreve.65.066130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038662419
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1103/physreve.67.026126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013919856
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1103/physreve.68.036112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045283383
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1103/physrevlett.87.258701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017006771
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1103/physrevlett.89.208701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012572068
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1103/physrevlett.89.268703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825808
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/lcomm.2004.823426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061346611
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1126/science.1065103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048235090
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1126/science.1106340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451305
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1137/s003614450342480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877811
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1145/316194.316229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063167710
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1209/epl/i2005-10574-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013341016
    163 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...