Bang–bang control of fullerene qubits using ultrafast phase gates View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12-25

AUTHORS

John J. L. Morton, Alexei M. Tyryshkin, Arzhang Ardavan, Simon C. Benjamin, Kyriakos Porfyrakis, S. A. Lyon, G. Andrew D. Briggs

ABSTRACT

Quantum mechanics permits an entity, such as an atom, to exist in a superposition of multiple states simultaneously. Quantum information processing (QIP) harnesses this profound phenomenon to manipulate information in radically new ways1. A fundamental challenge in all QIP technologies is the corruption of superposition in a quantum bit (qubit) through interaction with its environment. Quantum bang–bang control provides a solution by repeatedly applying ‘kicks’ to a qubit2, thus disrupting an environmental interaction. However, the speed and precision required for the kick operations has presented an obstacle to experimental realization. Here we demonstrate a phase gate of unprecedented speed3,4 on a nuclear spin qubit in a fullerene molecule, and use it to bang–bang decouple the qubit from a strong environmental interaction. We can thus trap the qubit in closed cycles on the Bloch sphere, or lock it in a given state for an arbitrary period. Our procedure uses operations on a second qubit, an electron spin, to generate an arbitrary phase on the nuclear qubit. We anticipate that the approach will be important for QIP technologies, especially at the molecular scale where other strategies, such as electrode switching, are unfeasible. More... »

PAGES

40-43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys192

DOI

http://dx.doi.org/10.1038/nphys192

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034989697


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Clarendon Laboratory, Oxford University, OX1 3PU, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Materials, Oxford University, OX1 3PH, Oxford, UK", 
            "Department of Physics, Clarendon Laboratory, Oxford University, OX1 3PU, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morton", 
        "givenName": "John J. L.", 
        "id": "sg:person.010347574662.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010347574662.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tyryshkin", 
        "givenName": "Alexei M.", 
        "id": "sg:person.01343633213.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343633213.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Clarendon Laboratory, Oxford University, OX1 3PU, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Physics, Clarendon Laboratory, Oxford University, OX1 3PU, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ardavan", 
        "givenName": "Arzhang", 
        "id": "sg:person.01205636543.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205636543.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials, Oxford University, OX1 3PH, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Materials, Oxford University, OX1 3PH, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benjamin", 
        "givenName": "Simon C.", 
        "id": "sg:person.0753703202.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753703202.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials, Oxford University, OX1 3PH, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Materials, Oxford University, OX1 3PH, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Porfyrakis", 
        "givenName": "Kyriakos", 
        "id": "sg:person.0675073031.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675073031.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyon", 
        "givenName": "S. A.", 
        "id": "sg:person.0661651410.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661651410.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials, Oxford University, OX1 3PH, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Materials, Oxford University, OX1 3PH, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Briggs", 
        "givenName": "G. Andrew D.", 
        "id": "sg:person.013710161421.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013710161421.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature03350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032975547", 
          "https://doi.org/10.1038/nature03350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35002528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051098260", 
          "https://doi.org/10.1038/35002528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/414883a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050528624", 
          "https://doi.org/10.1038/414883a"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12-25", 
    "datePublishedReg": "2005-12-25", 
    "description": "Quantum mechanics permits an entity, such as an atom, to exist in a superposition of multiple states simultaneously. Quantum information processing (QIP) harnesses this profound phenomenon to manipulate information in radically new ways1. A fundamental challenge in all QIP technologies is the corruption of superposition in a quantum bit (qubit) through interaction with its environment. Quantum bang\u2013bang control provides a solution by repeatedly applying \u2018kicks\u2019 to a qubit2, thus disrupting an environmental interaction. However, the speed and precision required for the kick operations has presented an obstacle to experimental realization. Here we demonstrate a phase gate of unprecedented speed3,4 on a nuclear spin qubit in a fullerene molecule, and use it to bang\u2013bang decouple the qubit from a strong environmental interaction. We can thus trap the qubit in closed cycles on the Bloch sphere, or lock it in a given state for an arbitrary period. Our procedure uses operations on a second qubit, an electron spin, to generate an arbitrary phase on the nuclear qubit. We anticipate that the approach will be important for QIP technologies, especially at the molecular scale where other strategies, such as electrode switching, are\u00a0unfeasible.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nphys192", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3028400", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3084830", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "quantum information processing", 
      "phase gate", 
      "nuclear spin qubits", 
      "ultrafast phase gate", 
      "nuclear qubits", 
      "spin qubits", 
      "strong environmental interactions", 
      "quantum bits", 
      "electron spin", 
      "experimental realization", 
      "quantum mechanics", 
      "second qubit", 
      "qubits", 
      "Bloch sphere", 
      "arbitrary phase", 
      "profound phenomenon", 
      "electrode switching", 
      "fullerene molecules", 
      "information processing", 
      "superposition", 
      "molecular scale", 
      "spin", 
      "gate", 
      "atoms", 
      "state", 
      "interaction", 
      "decouples", 
      "kick", 
      "switching", 
      "mechanics", 
      "arbitrary period", 
      "realization", 
      "closed cycle", 
      "environmental interactions", 
      "multiple states", 
      "fundamental challenge", 
      "phenomenon", 
      "phase", 
      "molecules", 
      "bang-bang control", 
      "precision", 
      "sphere", 
      "operation", 
      "bits", 
      "technology", 
      "scale", 
      "speed", 
      "processing", 
      "solution", 
      "information", 
      "environment", 
      "approach", 
      "obstacles", 
      "control", 
      "cycle", 
      "challenges", 
      "procedure", 
      "period", 
      "strategies", 
      "entities", 
      "corruption"
    ], 
    "name": "Bang\u2013bang control of fullerene qubits using ultrafast phase gates", 
    "pagination": "40-43", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034989697"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys192"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys192", 
      "https://app.dimensions.ai/details/publication/pub.1034989697"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_404.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nphys192"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys192'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys192'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys192'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys192'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      88 URIs      77 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys192 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N0b9725ef15d7450f8973d4496c33da5d
4 schema:citation sg:pub.10.1038/35002528
5 sg:pub.10.1038/414883a
6 sg:pub.10.1038/nature03350
7 schema:datePublished 2005-12-25
8 schema:datePublishedReg 2005-12-25
9 schema:description Quantum mechanics permits an entity, such as an atom, to exist in a superposition of multiple states simultaneously. Quantum information processing (QIP) harnesses this profound phenomenon to manipulate information in radically new ways1. A fundamental challenge in all QIP technologies is the corruption of superposition in a quantum bit (qubit) through interaction with its environment. Quantum bang–bang control provides a solution by repeatedly applying ‘kicks’ to a qubit2, thus disrupting an environmental interaction. However, the speed and precision required for the kick operations has presented an obstacle to experimental realization. Here we demonstrate a phase gate of unprecedented speed3,4 on a nuclear spin qubit in a fullerene molecule, and use it to bang–bang decouple the qubit from a strong environmental interaction. We can thus trap the qubit in closed cycles on the Bloch sphere, or lock it in a given state for an arbitrary period. Our procedure uses operations on a second qubit, an electron spin, to generate an arbitrary phase on the nuclear qubit. We anticipate that the approach will be important for QIP technologies, especially at the molecular scale where other strategies, such as electrode switching, are unfeasible.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf Naaae0159b8a74fba9c84888cf5ac111a
13 Nb973d891bcf649c4b6a6b66abb2003c9
14 sg:journal.1034717
15 schema:keywords Bloch sphere
16 approach
17 arbitrary period
18 arbitrary phase
19 atoms
20 bang-bang control
21 bits
22 challenges
23 closed cycle
24 control
25 corruption
26 cycle
27 decouples
28 electrode switching
29 electron spin
30 entities
31 environment
32 environmental interactions
33 experimental realization
34 fullerene molecules
35 fundamental challenge
36 gate
37 information
38 information processing
39 interaction
40 kick
41 mechanics
42 molecular scale
43 molecules
44 multiple states
45 nuclear qubits
46 nuclear spin qubits
47 obstacles
48 operation
49 period
50 phase
51 phase gate
52 phenomenon
53 precision
54 procedure
55 processing
56 profound phenomenon
57 quantum bits
58 quantum information processing
59 quantum mechanics
60 qubits
61 realization
62 scale
63 second qubit
64 solution
65 speed
66 sphere
67 spin
68 spin qubits
69 state
70 strategies
71 strong environmental interactions
72 superposition
73 switching
74 technology
75 ultrafast phase gate
76 schema:name Bang–bang control of fullerene qubits using ultrafast phase gates
77 schema:pagination 40-43
78 schema:productId N023c2db812c945589ddf5702dcf8cc6f
79 Ne3048b638c0e4f8ca78657519973c6cc
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034989697
81 https://doi.org/10.1038/nphys192
82 schema:sdDatePublished 2022-10-01T06:33
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N71e1fa5a83484eccb0e32cafe1292c7f
85 schema:url https://doi.org/10.1038/nphys192
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N023c2db812c945589ddf5702dcf8cc6f schema:name dimensions_id
90 schema:value pub.1034989697
91 rdf:type schema:PropertyValue
92 N0b9725ef15d7450f8973d4496c33da5d rdf:first sg:person.010347574662.68
93 rdf:rest Nf6954e5e40b44ac7bc5df25dd249aeb3
94 N18d6c5274fb942bda90ab4e31227d660 rdf:first sg:person.01205636543.25
95 rdf:rest N5c488011f6da4254bc18b6692ced2600
96 N32d6009e16b741848e0157b2dca5002c rdf:first sg:person.0661651410.75
97 rdf:rest Na40623e1b8a74728a8d57d5b9feb2a4a
98 N33a8b9d81fcc44d6a7cc0c38d05ac6b8 rdf:first sg:person.0675073031.33
99 rdf:rest N32d6009e16b741848e0157b2dca5002c
100 N5c488011f6da4254bc18b6692ced2600 rdf:first sg:person.0753703202.37
101 rdf:rest N33a8b9d81fcc44d6a7cc0c38d05ac6b8
102 N71e1fa5a83484eccb0e32cafe1292c7f schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Na40623e1b8a74728a8d57d5b9feb2a4a rdf:first sg:person.013710161421.38
105 rdf:rest rdf:nil
106 Naaae0159b8a74fba9c84888cf5ac111a schema:issueNumber 1
107 rdf:type schema:PublicationIssue
108 Nb973d891bcf649c4b6a6b66abb2003c9 schema:volumeNumber 2
109 rdf:type schema:PublicationVolume
110 Ne3048b638c0e4f8ca78657519973c6cc schema:name doi
111 schema:value 10.1038/nphys192
112 rdf:type schema:PropertyValue
113 Nf6954e5e40b44ac7bc5df25dd249aeb3 rdf:first sg:person.01343633213.44
114 rdf:rest N18d6c5274fb942bda90ab4e31227d660
115 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
116 schema:name Physical Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
119 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
120 rdf:type schema:DefinedTerm
121 sg:grant.3028400 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys192
122 rdf:type schema:MonetaryGrant
123 sg:grant.3084830 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys192
124 rdf:type schema:MonetaryGrant
125 sg:journal.1034717 schema:issn 1745-2473
126 1745-2481
127 schema:name Nature Physics
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.010347574662.68 schema:affiliation grid-institutes:grid.4991.5
131 schema:familyName Morton
132 schema:givenName John J. L.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010347574662.68
134 rdf:type schema:Person
135 sg:person.01205636543.25 schema:affiliation grid-institutes:grid.4991.5
136 schema:familyName Ardavan
137 schema:givenName Arzhang
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205636543.25
139 rdf:type schema:Person
140 sg:person.01343633213.44 schema:affiliation grid-institutes:grid.16750.35
141 schema:familyName Tyryshkin
142 schema:givenName Alexei M.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343633213.44
144 rdf:type schema:Person
145 sg:person.013710161421.38 schema:affiliation grid-institutes:grid.4991.5
146 schema:familyName Briggs
147 schema:givenName G. Andrew D.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013710161421.38
149 rdf:type schema:Person
150 sg:person.0661651410.75 schema:affiliation grid-institutes:grid.16750.35
151 schema:familyName Lyon
152 schema:givenName S. A.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661651410.75
154 rdf:type schema:Person
155 sg:person.0675073031.33 schema:affiliation grid-institutes:grid.4991.5
156 schema:familyName Porfyrakis
157 schema:givenName Kyriakos
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675073031.33
159 rdf:type schema:Person
160 sg:person.0753703202.37 schema:affiliation grid-institutes:grid.4991.5
161 schema:familyName Benjamin
162 schema:givenName Simon C.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753703202.37
164 rdf:type schema:Person
165 sg:pub.10.1038/35002528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051098260
166 https://doi.org/10.1038/35002528
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/414883a schema:sameAs https://app.dimensions.ai/details/publication/pub.1050528624
169 https://doi.org/10.1038/414883a
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nature03350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032975547
172 https://doi.org/10.1038/nature03350
173 rdf:type schema:CreativeWork
174 grid-institutes:grid.16750.35 schema:alternateName Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA
175 schema:name Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA
176 rdf:type schema:Organization
177 grid-institutes:grid.4991.5 schema:alternateName Department of Materials, Oxford University, OX1 3PH, Oxford, UK
178 Department of Physics, Clarendon Laboratory, Oxford University, OX1 3PU, Oxford, UK
179 schema:name Department of Materials, Oxford University, OX1 3PH, Oxford, UK
180 Department of Physics, Clarendon Laboratory, Oxford University, OX1 3PU, Oxford, UK
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...