Bang–bang control of fullerene qubits using ultrafast phase gates View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12-25

AUTHORS

John J. L. Morton, Alexei M. Tyryshkin, Arzhang Ardavan, Simon C. Benjamin, Kyriakos Porfyrakis, S. A. Lyon, G. Andrew D. Briggs

ABSTRACT

Quantum mechanics permits an entity, such as an atom, to exist in a superposition of multiple states simultaneously. Quantum information processing (QIP) harnesses this profound phenomenon to manipulate information in radically new ways1. A fundamental challenge in all QIP technologies is the corruption of superposition in a quantum bit (qubit) through interaction with its environment. Quantum bang–bang control provides a solution by repeatedly applying ‘kicks’ to a qubit2, thus disrupting an environmental interaction. However, the speed and precision required for the kick operations has presented an obstacle to experimental realization. Here we demonstrate a phase gate of unprecedented speed3,4 on a nuclear spin qubit in a fullerene molecule, and use it to bang–bang decouple the qubit from a strong environmental interaction. We can thus trap the qubit in closed cycles on the Bloch sphere, or lock it in a given state for an arbitrary period. Our procedure uses operations on a second qubit, an electron spin, to generate an arbitrary phase on the nuclear qubit. We anticipate that the approach will be important for QIP technologies, especially at the molecular scale where other strategies, such as electrode switching, are unfeasible. More... »

PAGES

40-43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys192

DOI

http://dx.doi.org/10.1038/nphys192

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034989697


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Clarendon Laboratory, Oxford University, OX1 3PU, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Materials, Oxford University, OX1 3PH, Oxford, UK", 
            "Department of Physics, Clarendon Laboratory, Oxford University, OX1 3PU, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morton", 
        "givenName": "John J. L.", 
        "id": "sg:person.010347574662.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010347574662.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tyryshkin", 
        "givenName": "Alexei M.", 
        "id": "sg:person.01343633213.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343633213.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Clarendon Laboratory, Oxford University, OX1 3PU, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Physics, Clarendon Laboratory, Oxford University, OX1 3PU, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ardavan", 
        "givenName": "Arzhang", 
        "id": "sg:person.01205636543.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205636543.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials, Oxford University, OX1 3PH, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Materials, Oxford University, OX1 3PH, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benjamin", 
        "givenName": "Simon C.", 
        "id": "sg:person.0753703202.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753703202.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials, Oxford University, OX1 3PH, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Materials, Oxford University, OX1 3PH, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Porfyrakis", 
        "givenName": "Kyriakos", 
        "id": "sg:person.0675073031.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675073031.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyon", 
        "givenName": "S. A.", 
        "id": "sg:person.0661651410.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661651410.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials, Oxford University, OX1 3PH, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Materials, Oxford University, OX1 3PH, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Briggs", 
        "givenName": "G. Andrew D.", 
        "id": "sg:person.013710161421.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013710161421.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature03350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032975547", 
          "https://doi.org/10.1038/nature03350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35002528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051098260", 
          "https://doi.org/10.1038/35002528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/414883a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050528624", 
          "https://doi.org/10.1038/414883a"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12-25", 
    "datePublishedReg": "2005-12-25", 
    "description": "Quantum mechanics permits an entity, such as an atom, to exist in a superposition of multiple states simultaneously. Quantum information processing (QIP) harnesses this profound phenomenon to manipulate information in radically new ways1. A fundamental challenge in all QIP technologies is the corruption of superposition in a quantum bit (qubit) through interaction with its environment. Quantum bang\u2013bang control provides a solution by repeatedly applying \u2018kicks\u2019 to a qubit2, thus disrupting an environmental interaction. However, the speed and precision required for the kick operations has presented an obstacle to experimental realization. Here we demonstrate a phase gate of unprecedented speed3,4 on a nuclear spin qubit in a fullerene molecule, and use it to bang\u2013bang decouple the qubit from a strong environmental interaction. We can thus trap the qubit in closed cycles on the Bloch sphere, or lock it in a given state for an arbitrary period. Our procedure uses operations on a second qubit, an electron spin, to generate an arbitrary phase on the nuclear qubit. We anticipate that the approach will be important for QIP technologies, especially at the molecular scale where other strategies, such as electrode switching, are\u00a0unfeasible.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nphys192", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3028400", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3084830", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "quantum information processing", 
      "phase gate", 
      "nuclear spin qubits", 
      "ultrafast phase gate", 
      "nuclear qubits", 
      "spin qubits", 
      "strong environmental interactions", 
      "quantum bits", 
      "electron spin", 
      "experimental realization", 
      "quantum mechanics", 
      "second qubit", 
      "qubits", 
      "Bloch sphere", 
      "arbitrary phase", 
      "profound phenomenon", 
      "electrode switching", 
      "fullerene molecules", 
      "information processing", 
      "superposition", 
      "molecular scale", 
      "spin", 
      "gate", 
      "atoms", 
      "state", 
      "interaction", 
      "decouples", 
      "kick", 
      "switching", 
      "mechanics", 
      "arbitrary period", 
      "realization", 
      "closed cycle", 
      "environmental interactions", 
      "multiple states", 
      "fundamental challenge", 
      "phenomenon", 
      "phase", 
      "molecules", 
      "bang-bang control", 
      "precision", 
      "sphere", 
      "operation", 
      "bits", 
      "technology", 
      "scale", 
      "speed", 
      "processing", 
      "solution", 
      "information", 
      "environment", 
      "approach", 
      "obstacles", 
      "control", 
      "cycle", 
      "challenges", 
      "procedure", 
      "period", 
      "strategies", 
      "entities", 
      "corruption"
    ], 
    "name": "Bang\u2013bang control of fullerene qubits using ultrafast phase gates", 
    "pagination": "40-43", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034989697"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys192"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys192", 
      "https://app.dimensions.ai/details/publication/pub.1034989697"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_404.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nphys192"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys192'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys192'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys192'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys192'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      88 URIs      77 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys192 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Neecb87e3426444d7998abfbecc0b5299
4 schema:citation sg:pub.10.1038/35002528
5 sg:pub.10.1038/414883a
6 sg:pub.10.1038/nature03350
7 schema:datePublished 2005-12-25
8 schema:datePublishedReg 2005-12-25
9 schema:description Quantum mechanics permits an entity, such as an atom, to exist in a superposition of multiple states simultaneously. Quantum information processing (QIP) harnesses this profound phenomenon to manipulate information in radically new ways1. A fundamental challenge in all QIP technologies is the corruption of superposition in a quantum bit (qubit) through interaction with its environment. Quantum bang–bang control provides a solution by repeatedly applying ‘kicks’ to a qubit2, thus disrupting an environmental interaction. However, the speed and precision required for the kick operations has presented an obstacle to experimental realization. Here we demonstrate a phase gate of unprecedented speed3,4 on a nuclear spin qubit in a fullerene molecule, and use it to bang–bang decouple the qubit from a strong environmental interaction. We can thus trap the qubit in closed cycles on the Bloch sphere, or lock it in a given state for an arbitrary period. Our procedure uses operations on a second qubit, an electron spin, to generate an arbitrary phase on the nuclear qubit. We anticipate that the approach will be important for QIP technologies, especially at the molecular scale where other strategies, such as electrode switching, are unfeasible.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N47c4a7e5d12c4acb979ea05fc964d363
13 N76db2a72597c4d209e3ccee49cd9bf22
14 sg:journal.1034717
15 schema:keywords Bloch sphere
16 approach
17 arbitrary period
18 arbitrary phase
19 atoms
20 bang-bang control
21 bits
22 challenges
23 closed cycle
24 control
25 corruption
26 cycle
27 decouples
28 electrode switching
29 electron spin
30 entities
31 environment
32 environmental interactions
33 experimental realization
34 fullerene molecules
35 fundamental challenge
36 gate
37 information
38 information processing
39 interaction
40 kick
41 mechanics
42 molecular scale
43 molecules
44 multiple states
45 nuclear qubits
46 nuclear spin qubits
47 obstacles
48 operation
49 period
50 phase
51 phase gate
52 phenomenon
53 precision
54 procedure
55 processing
56 profound phenomenon
57 quantum bits
58 quantum information processing
59 quantum mechanics
60 qubits
61 realization
62 scale
63 second qubit
64 solution
65 speed
66 sphere
67 spin
68 spin qubits
69 state
70 strategies
71 strong environmental interactions
72 superposition
73 switching
74 technology
75 ultrafast phase gate
76 schema:name Bang–bang control of fullerene qubits using ultrafast phase gates
77 schema:pagination 40-43
78 schema:productId Nf6d81b0f5fa24fb7b34b091460596334
79 Nf92c3f634d3144279b8a0de13c5ad957
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034989697
81 https://doi.org/10.1038/nphys192
82 schema:sdDatePublished 2022-10-01T06:33
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N3adea1088b0a416ead20c62080fcb44d
85 schema:url https://doi.org/10.1038/nphys192
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N204826aeec0140449b52bcac937856b9 rdf:first sg:person.013710161421.38
90 rdf:rest rdf:nil
91 N3adea1088b0a416ead20c62080fcb44d schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N47c4a7e5d12c4acb979ea05fc964d363 schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 N48181827f03a4fd4bc89f40f23447626 rdf:first sg:person.01343633213.44
96 rdf:rest Nbbf4bee74e8a4a939dc114f0a2254637
97 N76db2a72597c4d209e3ccee49cd9bf22 schema:volumeNumber 2
98 rdf:type schema:PublicationVolume
99 N9b93c94b439644008f4479c8f706d017 rdf:first sg:person.0675073031.33
100 rdf:rest Nd9208c8929dd4160a8e6348b1aee06f0
101 Nbbe8b4f89af743a38bb1b47d857bb85e rdf:first sg:person.0753703202.37
102 rdf:rest N9b93c94b439644008f4479c8f706d017
103 Nbbf4bee74e8a4a939dc114f0a2254637 rdf:first sg:person.01205636543.25
104 rdf:rest Nbbe8b4f89af743a38bb1b47d857bb85e
105 Nd9208c8929dd4160a8e6348b1aee06f0 rdf:first sg:person.0661651410.75
106 rdf:rest N204826aeec0140449b52bcac937856b9
107 Neecb87e3426444d7998abfbecc0b5299 rdf:first sg:person.010347574662.68
108 rdf:rest N48181827f03a4fd4bc89f40f23447626
109 Nf6d81b0f5fa24fb7b34b091460596334 schema:name doi
110 schema:value 10.1038/nphys192
111 rdf:type schema:PropertyValue
112 Nf92c3f634d3144279b8a0de13c5ad957 schema:name dimensions_id
113 schema:value pub.1034989697
114 rdf:type schema:PropertyValue
115 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
116 schema:name Physical Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
119 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
120 rdf:type schema:DefinedTerm
121 sg:grant.3028400 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys192
122 rdf:type schema:MonetaryGrant
123 sg:grant.3084830 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys192
124 rdf:type schema:MonetaryGrant
125 sg:journal.1034717 schema:issn 1745-2473
126 1745-2481
127 schema:name Nature Physics
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.010347574662.68 schema:affiliation grid-institutes:grid.4991.5
131 schema:familyName Morton
132 schema:givenName John J. L.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010347574662.68
134 rdf:type schema:Person
135 sg:person.01205636543.25 schema:affiliation grid-institutes:grid.4991.5
136 schema:familyName Ardavan
137 schema:givenName Arzhang
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205636543.25
139 rdf:type schema:Person
140 sg:person.01343633213.44 schema:affiliation grid-institutes:grid.16750.35
141 schema:familyName Tyryshkin
142 schema:givenName Alexei M.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343633213.44
144 rdf:type schema:Person
145 sg:person.013710161421.38 schema:affiliation grid-institutes:grid.4991.5
146 schema:familyName Briggs
147 schema:givenName G. Andrew D.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013710161421.38
149 rdf:type schema:Person
150 sg:person.0661651410.75 schema:affiliation grid-institutes:grid.16750.35
151 schema:familyName Lyon
152 schema:givenName S. A.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661651410.75
154 rdf:type schema:Person
155 sg:person.0675073031.33 schema:affiliation grid-institutes:grid.4991.5
156 schema:familyName Porfyrakis
157 schema:givenName Kyriakos
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675073031.33
159 rdf:type schema:Person
160 sg:person.0753703202.37 schema:affiliation grid-institutes:grid.4991.5
161 schema:familyName Benjamin
162 schema:givenName Simon C.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753703202.37
164 rdf:type schema:Person
165 sg:pub.10.1038/35002528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051098260
166 https://doi.org/10.1038/35002528
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/414883a schema:sameAs https://app.dimensions.ai/details/publication/pub.1050528624
169 https://doi.org/10.1038/414883a
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nature03350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032975547
172 https://doi.org/10.1038/nature03350
173 rdf:type schema:CreativeWork
174 grid-institutes:grid.16750.35 schema:alternateName Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA
175 schema:name Department of Electrical Engineering, Princeton University, 08544, Princeton, New Jersey, USA
176 rdf:type schema:Organization
177 grid-institutes:grid.4991.5 schema:alternateName Department of Materials, Oxford University, OX1 3PH, Oxford, UK
178 Department of Physics, Clarendon Laboratory, Oxford University, OX1 3PU, Oxford, UK
179 schema:name Department of Materials, Oxford University, OX1 3PH, Oxford, UK
180 Department of Physics, Clarendon Laboratory, Oxford University, OX1 3PU, Oxford, UK
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...