Non-Abelian statistics and topological quantum information processing in 1D wire networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-02-13

AUTHORS

Jason Alicea, Yuval Oreg, Gil Refael, Felix von Oppen, Matthew P. A. Fisher

ABSTRACT

The synthesis of a quantum computer remains an ongoing challenge in modern physics. Whereas decoherence stymies most approaches, topological quantum computation schemes evade decoherence at the hardware level by storing quantum information non-locally. Here we establish that a key operation—braiding of non-Abelian anyons—can be implemented using one-dimensional semiconducting wires. Such wires can be driven into a topological phase supporting long-sought particles known as Majorana fermions that can encode topological qubits. We show that in wire networks, Majorana fermions can be meaningfully braided by simply adjusting gate voltages, and that they exhibit non-Abelian statistics like vortices in a p+ip superconductor. We propose experimental set-ups that enable probing of the Majorana fusion rules and the efficient exchange of arbitrary numbers of Majorana fermions. This work should open a new direction in topological quantum computation that benefits from physical transparency and experimental feasibility. More... »

PAGES

412-417

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys1915

DOI

http://dx.doi.org/10.1038/nphys1915

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022583847


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics and Astronomy, University of California, Irvine, California 92697, USA", 
          "id": "http://www.grid.ac/institutes/grid.266093.8", 
          "name": [
            "Department of Physics and Astronomy, University of California, Irvine, California 92697, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alicea", 
        "givenName": "Jason", 
        "id": "sg:person.0715223222.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715223222.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oreg", 
        "givenName": "Yuval", 
        "id": "sg:person.01235174414.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235174414.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, California Institute of Technology, Pasadena, California 91125, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Department of Physics, California Institute of Technology, Pasadena, California 91125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Refael", 
        "givenName": "Gil", 
        "id": "sg:person.07652724447.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07652724447.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universit\u00e4t Berlin, 14195 Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.14095.39", 
          "name": [
            "Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universit\u00e4t Berlin, 14195 Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "von Oppen", 
        "givenName": "Felix", 
        "id": "sg:person.01366036711.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366036711.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of California, Santa Barbara, California 93106, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Physics, California Institute of Technology, Pasadena, California 91125, USA", 
            "Department of Physics, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fisher", 
        "givenName": "Matthew P. A.", 
        "id": "sg:person.01327141233.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327141233.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01217906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044402349", 
          "https://doi.org/10.1007/bf01217906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02727953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049851895", 
          "https://doi.org/10.1007/bf02727953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b13586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109718751", 
          "https://doi.org/10.1007/b13586"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-02-13", 
    "datePublishedReg": "2011-02-13", 
    "description": "The synthesis of a quantum computer remains an ongoing challenge in modern physics. Whereas decoherence stymies most approaches, topological quantum computation schemes evade decoherence at the hardware level by storing quantum information non-locally. Here we establish that a key operation\u2014braiding of non-Abelian anyons\u2014can be implemented using one-dimensional semiconducting wires. Such wires can be driven into a topological phase supporting long-sought particles known as Majorana fermions that can encode topological qubits. We show that in wire networks, Majorana fermions can be meaningfully braided by simply adjusting gate voltages, and that they exhibit non-Abelian statistics like vortices in a p+ip superconductor. We propose experimental set-ups that enable probing of the Majorana fusion rules and the efficient exchange of arbitrary numbers of Majorana fermions. This work should open a new direction in topological quantum computation that benefits from physical transparency and experimental feasibility.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nphys1915", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2996392", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2993873", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3055954", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "non-Abelian statistics", 
      "Majorana fermions", 
      "topological quantum information processing", 
      "topological quantum computation scheme", 
      "quantum information processing", 
      "quantum computation schemes", 
      "topological quantum computation", 
      "non-Abelian anyons", 
      "topological qubits", 
      "wire network", 
      "quantum computation", 
      "quantum computer", 
      "semiconducting wires", 
      "topological phases", 
      "experimental feasibility", 
      "modern physics", 
      "fermions", 
      "gate voltage", 
      "decoherence", 
      "physical transparency", 
      "such wires", 
      "information non", 
      "information processing", 
      "computation scheme", 
      "arbitrary number", 
      "qubits", 
      "physics", 
      "anyons", 
      "superconductors", 
      "wire", 
      "fusion rule", 
      "statistics", 
      "particles", 
      "vortices", 
      "voltage", 
      "transparency", 
      "most approaches", 
      "computation", 
      "scheme", 
      "network", 
      "hardware level", 
      "phase", 
      "direction", 
      "new directions", 
      "computer", 
      "efficient exchange", 
      "exchange", 
      "approach", 
      "rules", 
      "work", 
      "number", 
      "Non", 
      "feasibility", 
      "ongoing challenge", 
      "processing", 
      "synthesis", 
      "levels", 
      "challenges"
    ], 
    "name": "Non-Abelian statistics and topological quantum information processing in 1D wire networks", 
    "pagination": "412-417", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022583847"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys1915"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys1915", 
      "https://app.dimensions.ai/details/publication/pub.1022583847"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nphys1915"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys1915'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys1915'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys1915'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys1915'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      85 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys1915 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nce7e14c9096b46cca937deb08849ee58
4 schema:citation sg:pub.10.1007/b13586
5 sg:pub.10.1007/bf01217906
6 sg:pub.10.1007/bf02727953
7 schema:datePublished 2011-02-13
8 schema:datePublishedReg 2011-02-13
9 schema:description The synthesis of a quantum computer remains an ongoing challenge in modern physics. Whereas decoherence stymies most approaches, topological quantum computation schemes evade decoherence at the hardware level by storing quantum information non-locally. Here we establish that a key operation—braiding of non-Abelian anyons—can be implemented using one-dimensional semiconducting wires. Such wires can be driven into a topological phase supporting long-sought particles known as Majorana fermions that can encode topological qubits. We show that in wire networks, Majorana fermions can be meaningfully braided by simply adjusting gate voltages, and that they exhibit non-Abelian statistics like vortices in a p+ip superconductor. We propose experimental set-ups that enable probing of the Majorana fusion rules and the efficient exchange of arbitrary numbers of Majorana fermions. This work should open a new direction in topological quantum computation that benefits from physical transparency and experimental feasibility.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N6b9e88da96924f72ae887dbe162552e9
13 Nd160880884aa432babb45d937e7708a1
14 sg:journal.1034717
15 schema:keywords Majorana fermions
16 Non
17 anyons
18 approach
19 arbitrary number
20 challenges
21 computation
22 computation scheme
23 computer
24 decoherence
25 direction
26 efficient exchange
27 exchange
28 experimental feasibility
29 feasibility
30 fermions
31 fusion rule
32 gate voltage
33 hardware level
34 information non
35 information processing
36 levels
37 modern physics
38 most approaches
39 network
40 new directions
41 non-Abelian anyons
42 non-Abelian statistics
43 number
44 ongoing challenge
45 particles
46 phase
47 physical transparency
48 physics
49 processing
50 quantum computation
51 quantum computation schemes
52 quantum computer
53 quantum information processing
54 qubits
55 rules
56 scheme
57 semiconducting wires
58 statistics
59 such wires
60 superconductors
61 synthesis
62 topological phases
63 topological quantum computation
64 topological quantum computation scheme
65 topological quantum information processing
66 topological qubits
67 transparency
68 voltage
69 vortices
70 wire
71 wire network
72 work
73 schema:name Non-Abelian statistics and topological quantum information processing in 1D wire networks
74 schema:pagination 412-417
75 schema:productId N3072b025903d457893fc0d29c5081172
76 Ncbb1c75836754662af5087d698f5a74a
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022583847
78 https://doi.org/10.1038/nphys1915
79 schema:sdDatePublished 2022-12-01T06:28
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N108064c14900481086f86e2393d00b2a
82 schema:url https://doi.org/10.1038/nphys1915
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N100964e4af914e799aab5ab5175e6817 rdf:first sg:person.01327141233.96
87 rdf:rest rdf:nil
88 N108064c14900481086f86e2393d00b2a schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N3072b025903d457893fc0d29c5081172 schema:name doi
91 schema:value 10.1038/nphys1915
92 rdf:type schema:PropertyValue
93 N5f56e5d7cbf34765ba9ad2bd24f1ee79 rdf:first sg:person.01235174414.28
94 rdf:rest Ne1b6b03c1c2f4104b49804b515b9c1f8
95 N6b9e88da96924f72ae887dbe162552e9 schema:issueNumber 5
96 rdf:type schema:PublicationIssue
97 N97284b554b494270802d2de7a9aa5615 rdf:first sg:person.01366036711.96
98 rdf:rest N100964e4af914e799aab5ab5175e6817
99 Ncbb1c75836754662af5087d698f5a74a schema:name dimensions_id
100 schema:value pub.1022583847
101 rdf:type schema:PropertyValue
102 Nce7e14c9096b46cca937deb08849ee58 rdf:first sg:person.0715223222.16
103 rdf:rest N5f56e5d7cbf34765ba9ad2bd24f1ee79
104 Nd160880884aa432babb45d937e7708a1 schema:volumeNumber 7
105 rdf:type schema:PublicationVolume
106 Ne1b6b03c1c2f4104b49804b515b9c1f8 rdf:first sg:person.07652724447.99
107 rdf:rest N97284b554b494270802d2de7a9aa5615
108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
112 schema:name Quantum Physics
113 rdf:type schema:DefinedTerm
114 sg:grant.2993873 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys1915
115 rdf:type schema:MonetaryGrant
116 sg:grant.2996392 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys1915
117 rdf:type schema:MonetaryGrant
118 sg:grant.3055954 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys1915
119 rdf:type schema:MonetaryGrant
120 sg:journal.1034717 schema:issn 1745-2473
121 1745-2481
122 schema:name Nature Physics
123 schema:publisher Springer Nature
124 rdf:type schema:Periodical
125 sg:person.01235174414.28 schema:affiliation grid-institutes:grid.13992.30
126 schema:familyName Oreg
127 schema:givenName Yuval
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235174414.28
129 rdf:type schema:Person
130 sg:person.01327141233.96 schema:affiliation grid-institutes:grid.133342.4
131 schema:familyName Fisher
132 schema:givenName Matthew P. A.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327141233.96
134 rdf:type schema:Person
135 sg:person.01366036711.96 schema:affiliation grid-institutes:grid.14095.39
136 schema:familyName von Oppen
137 schema:givenName Felix
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366036711.96
139 rdf:type schema:Person
140 sg:person.0715223222.16 schema:affiliation grid-institutes:grid.266093.8
141 schema:familyName Alicea
142 schema:givenName Jason
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715223222.16
144 rdf:type schema:Person
145 sg:person.07652724447.99 schema:affiliation grid-institutes:grid.20861.3d
146 schema:familyName Refael
147 schema:givenName Gil
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07652724447.99
149 rdf:type schema:Person
150 sg:pub.10.1007/b13586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109718751
151 https://doi.org/10.1007/b13586
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/bf01217906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044402349
154 https://doi.org/10.1007/bf01217906
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/bf02727953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049851895
157 https://doi.org/10.1007/bf02727953
158 rdf:type schema:CreativeWork
159 grid-institutes:grid.133342.4 schema:alternateName Department of Physics, University of California, Santa Barbara, California 93106, USA
160 schema:name Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
161 Department of Physics, University of California, Santa Barbara, California 93106, USA
162 rdf:type schema:Organization
163 grid-institutes:grid.13992.30 schema:alternateName Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
164 schema:name Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
165 rdf:type schema:Organization
166 grid-institutes:grid.14095.39 schema:alternateName Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
167 schema:name Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
168 rdf:type schema:Organization
169 grid-institutes:grid.20861.3d schema:alternateName Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
170 schema:name Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
171 rdf:type schema:Organization
172 grid-institutes:grid.266093.8 schema:alternateName Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
173 schema:name Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...