Andreev bound states in supercurrent-carrying carbon nanotubes revealed View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

J-D. Pillet, C. H. L. Quay, P. Morfin, C. Bena, A. Levy Yeyati, P. Joyez

ABSTRACT

Carbon nanotubes (CNTs) are not intrinsically superconducting but they can carry a supercurrent when connected to superconducting electrodes1,2,3,4. This supercurrent is mainly transmitted by discrete entangled electron–hole states confined to the nanotube, called Andreev bound states (ABS). These states are a key concept in mesoscopic superconductivity as they provide a universal description of Josephson-like effects in quantum-coherent nanostructures (for example molecules, nanowires, magnetic or normal metallic layers) connected to superconducting leads5. We report here the first tunnelling spectroscopy of individually resolved ABS, in a nanotube–superconductor device. Analysing the evolution of the ABS spectrum with a gate voltage, we show that the ABS arise from the discrete electronic levels of the molecule and that they reveal detailed information about the energies of these levels, their relative spin orientation and the coupling to the leads. Such measurements hence constitute a powerful new spectroscopic technique capable of elucidating the electronic structure of CNT-based devices, including those with well-coupled leads. This is relevant for conventional applications (for example, superconducting or normal transistors, superconducting quantum interference devices3 (SQUIDs)) and quantum information processing (for example, entangled electron pair generation6,7, ABS-based qubits8). Finally, our device is a new type of d.c.-measurable SQUID. More... »

PAGES

965

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys1811

DOI

http://dx.doi.org/10.1038/nphys1811

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051085950


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Quantronics Group, Service de Physique de l\u2019Etat Condens\u00e9, CNRS URA 2426, IRAMIS, CEA, F-91191 Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pillet", 
        "givenName": "J-D.", 
        "id": "sg:person.01044353722.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044353722.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Quantronics Group, Service de Physique de l\u2019Etat Condens\u00e9, CNRS URA 2426, IRAMIS, CEA, F-91191 Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quay", 
        "givenName": "C. H. L.", 
        "id": "sg:person.013551772343.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013551772343.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pierre Aigrain Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.463720.4", 
          "name": [
            "Laboratoire Pierre Aigrain (LPA), CNRS UMR 8551, Universit\u00e9 Pierre et Marie Curie (Paris VI)\u2014Universit\u00e9 Denis Diderot (Paris VII)\u2014Ecole Normale Sup\u00e9rieure de Paris (ENS Paris), France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morfin", 
        "givenName": "P.", 
        "id": "sg:person.011353740511.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011353740511.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA Saclay", 
          "id": "https://www.grid.ac/institutes/grid.457334.2", 
          "name": [
            "Laboratoire de Physique des Solides, CNRS UMR 8502, Universit\u00e9 Paris-Sud (Paris 11), B\u00e2t. 510, F-91405 Orsay, France", 
            "Institut de Physique Th\u00e9orique, CEA/Saclay, CNRS URA 2306, Orme des Merisiers, F-91191 Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bena", 
        "givenName": "C.", 
        "id": "sg:person.010145261275.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010145261275.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5515.4", 
          "name": [
            "Departamento de F\u0131\u00b4sica T\u00e9orica de la Materia Condensada C-V, Universidad Aut\u00f3noma de Madrid, E-28049 Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yeyati", 
        "givenName": "A. Levy", 
        "id": "sg:person.012276224316.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012276224316.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Quantronics Group, Service de Physique de l\u2019Etat Condens\u00e9, CNRS URA 2426, IRAMIS, CEA, F-91191 Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joyez", 
        "givenName": "P.", 
        "id": "sg:person.0611051357.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611051357.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001457380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001457380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.035105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002711674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.035105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002711674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002962233", 
          "https://doi.org/10.1038/nature06822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.165314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003595932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.165314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003595932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.127005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004599644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.127005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004599644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.024518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006824468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.024518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006824468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.134518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014673344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.134518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014673344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.256801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015445586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.256801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015445586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018887380", 
          "https://doi.org/10.1038/nphys1537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018887380", 
          "https://doi.org/10.1038/nphys1537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.026801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019523629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.026801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019523629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2971034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023229072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.106402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026884010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.106402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026884010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2006.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033005599", 
          "https://doi.org/10.1038/nnano.2006.54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2006.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033005599", 
          "https://doi.org/10.1038/nnano.2006.54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.147004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035041720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.147004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035041720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037537429", 
          "https://doi.org/10.1038/17569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037537429", 
          "https://doi.org/10.1038/17569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.087003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040741612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.087003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040741612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.224521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041203912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.224521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041203912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045038063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045038063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.126602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046319878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.126602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046319878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050909017", 
          "https://doi.org/10.1038/nature04550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050909017", 
          "https://doi.org/10.1038/nature04550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050909017", 
          "https://doi.org/10.1038/nature04550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.085305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053653144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.085305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053653144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.3740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.3740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.036804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.036804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.076805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.076805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.284.5419.1508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062565394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.69.1812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063118629"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "Carbon nanotubes (CNTs) are not intrinsically superconducting but they can carry a supercurrent when connected to superconducting electrodes1,2,3,4. This supercurrent is mainly transmitted by discrete entangled electron\u2013hole states confined to the nanotube, called Andreev bound states (ABS). These states are a key concept in mesoscopic superconductivity as they provide a universal description of Josephson-like effects in quantum-coherent nanostructures (for example molecules, nanowires, magnetic or normal metallic layers) connected to superconducting leads5. We report here the first tunnelling spectroscopy of individually resolved ABS, in a nanotube\u2013superconductor device. Analysing the evolution of the ABS spectrum with a gate voltage, we show that the ABS arise from the discrete electronic levels of the molecule and that they reveal detailed information about the energies of these levels, their relative spin orientation and the coupling to the leads. Such measurements hence constitute a powerful new spectroscopic technique capable of elucidating the electronic structure of CNT-based devices, including those with well-coupled leads. This is relevant for conventional applications (for example, superconducting or normal transistors, superconducting quantum interference devices3 (SQUIDs)) and quantum information processing (for example, entangled electron pair generation6,7, ABS-based qubits8). Finally, our device is a new type of d.c.-measurable SQUID.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys1811", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Andreev bound states in supercurrent-carrying carbon nanotubes revealed", 
    "pagination": "965", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f35a9da9329e9f147877bcaad7ec8656d0234f2d7240212dff9e558400fd4793"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys1811"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051085950"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys1811", 
      "https://app.dimensions.ai/details/publication/pub.1051085950"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys1811"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys1811'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys1811'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys1811'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys1811'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys1811 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author Nca91f3181aba42218384bc0222a9f075
4 schema:citation sg:pub.10.1038/17569
5 sg:pub.10.1038/nature04550
6 sg:pub.10.1038/nature06822
7 sg:pub.10.1038/nnano.2006.54
8 sg:pub.10.1038/nphys1537
9 https://doi.org/10.1063/1.2971034
10 https://doi.org/10.1103/physrevb.43.3740
11 https://doi.org/10.1103/physrevb.63.165314
12 https://doi.org/10.1103/physrevb.68.035105
13 https://doi.org/10.1103/physrevb.75.085305
14 https://doi.org/10.1103/physrevb.78.024518
15 https://doi.org/10.1103/physrevb.79.134518
16 https://doi.org/10.1103/physrevb.79.224521
17 https://doi.org/10.1103/physrevlett.102.036804
18 https://doi.org/10.1103/physrevlett.103.147004
19 https://doi.org/10.1103/physrevlett.104.026801
20 https://doi.org/10.1103/physrevlett.104.076805
21 https://doi.org/10.1103/physrevlett.74.1843
22 https://doi.org/10.1103/physrevlett.88.106402
23 https://doi.org/10.1103/physrevlett.89.256801
24 https://doi.org/10.1103/physrevlett.90.087003
25 https://doi.org/10.1103/physrevlett.99.126602
26 https://doi.org/10.1103/physrevlett.99.127005
27 https://doi.org/10.1103/revmodphys.79.353
28 https://doi.org/10.1126/science.284.5419.1508
29 https://doi.org/10.1143/jpsj.69.1812
30 schema:datePublished 2010-12
31 schema:datePublishedReg 2010-12-01
32 schema:description Carbon nanotubes (CNTs) are not intrinsically superconducting but they can carry a supercurrent when connected to superconducting electrodes1,2,3,4. This supercurrent is mainly transmitted by discrete entangled electron–hole states confined to the nanotube, called Andreev bound states (ABS). These states are a key concept in mesoscopic superconductivity as they provide a universal description of Josephson-like effects in quantum-coherent nanostructures (for example molecules, nanowires, magnetic or normal metallic layers) connected to superconducting leads5. We report here the first tunnelling spectroscopy of individually resolved ABS, in a nanotube–superconductor device. Analysing the evolution of the ABS spectrum with a gate voltage, we show that the ABS arise from the discrete electronic levels of the molecule and that they reveal detailed information about the energies of these levels, their relative spin orientation and the coupling to the leads. Such measurements hence constitute a powerful new spectroscopic technique capable of elucidating the electronic structure of CNT-based devices, including those with well-coupled leads. This is relevant for conventional applications (for example, superconducting or normal transistors, superconducting quantum interference devices3 (SQUIDs)) and quantum information processing (for example, entangled electron pair generation6,7, ABS-based qubits8). Finally, our device is a new type of d.c.-measurable SQUID.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N6d245ef4b4e2465198d10b51036d4b5e
37 Nf3a31bcd00bd4bbaafbad85336b9ff18
38 sg:journal.1034717
39 schema:name Andreev bound states in supercurrent-carrying carbon nanotubes revealed
40 schema:pagination 965
41 schema:productId N02ec3dc8f4854f3089f95c5d7b679e5e
42 N0a63c52749604396ad2b352e3887a079
43 Ndd24c87a0ccc4d26b0d5b7be4b8ffdbe
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051085950
45 https://doi.org/10.1038/nphys1811
46 schema:sdDatePublished 2019-04-11T00:04
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N155577ba87b04305ad4921a0c8a3102a
49 schema:url https://www.nature.com/articles/nphys1811
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N02ec3dc8f4854f3089f95c5d7b679e5e schema:name readcube_id
54 schema:value f35a9da9329e9f147877bcaad7ec8656d0234f2d7240212dff9e558400fd4793
55 rdf:type schema:PropertyValue
56 N0a63c52749604396ad2b352e3887a079 schema:name doi
57 schema:value 10.1038/nphys1811
58 rdf:type schema:PropertyValue
59 N155577ba87b04305ad4921a0c8a3102a schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N1ebdd808ea1a4704a9d2d9ea1b80b2b5 schema:name Quantronics Group, Service de Physique de l’Etat Condensé, CNRS URA 2426, IRAMIS, CEA, F-91191 Gif-sur-Yvette, France
62 rdf:type schema:Organization
63 N4439fad40bbe4f8789213f06dd26338a rdf:first sg:person.0611051357.16
64 rdf:rest rdf:nil
65 N6d245ef4b4e2465198d10b51036d4b5e schema:issueNumber 12
66 rdf:type schema:PublicationIssue
67 N899fa6223efa4974bcfa63536a2ca5e1 schema:name Quantronics Group, Service de Physique de l’Etat Condensé, CNRS URA 2426, IRAMIS, CEA, F-91191 Gif-sur-Yvette, France
68 rdf:type schema:Organization
69 N8bb30ca3c6354ef1b91983f2192f32b9 schema:name Quantronics Group, Service de Physique de l’Etat Condensé, CNRS URA 2426, IRAMIS, CEA, F-91191 Gif-sur-Yvette, France
70 rdf:type schema:Organization
71 Nbbacc001362249878a60c48ddd5fa6bf rdf:first sg:person.011353740511.26
72 rdf:rest Nc552c3b46d204fae863e7401574483b6
73 Nc552c3b46d204fae863e7401574483b6 rdf:first sg:person.010145261275.18
74 rdf:rest Ndc6a475f03134861a48f6c359f159878
75 Nca91f3181aba42218384bc0222a9f075 rdf:first sg:person.01044353722.12
76 rdf:rest Ne669f574939a41f281420c8da1875dc9
77 Ndc6a475f03134861a48f6c359f159878 rdf:first sg:person.012276224316.05
78 rdf:rest N4439fad40bbe4f8789213f06dd26338a
79 Ndd24c87a0ccc4d26b0d5b7be4b8ffdbe schema:name dimensions_id
80 schema:value pub.1051085950
81 rdf:type schema:PropertyValue
82 Ne669f574939a41f281420c8da1875dc9 rdf:first sg:person.013551772343.54
83 rdf:rest Nbbacc001362249878a60c48ddd5fa6bf
84 Nf3a31bcd00bd4bbaafbad85336b9ff18 schema:volumeNumber 6
85 rdf:type schema:PublicationVolume
86 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
87 schema:name Physical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
90 schema:name Condensed Matter Physics
91 rdf:type schema:DefinedTerm
92 sg:journal.1034717 schema:issn 1745-2473
93 1745-2481
94 schema:name Nature Physics
95 rdf:type schema:Periodical
96 sg:person.010145261275.18 schema:affiliation https://www.grid.ac/institutes/grid.457334.2
97 schema:familyName Bena
98 schema:givenName C.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010145261275.18
100 rdf:type schema:Person
101 sg:person.01044353722.12 schema:affiliation N899fa6223efa4974bcfa63536a2ca5e1
102 schema:familyName Pillet
103 schema:givenName J-D.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044353722.12
105 rdf:type schema:Person
106 sg:person.011353740511.26 schema:affiliation https://www.grid.ac/institutes/grid.463720.4
107 schema:familyName Morfin
108 schema:givenName P.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011353740511.26
110 rdf:type schema:Person
111 sg:person.012276224316.05 schema:affiliation https://www.grid.ac/institutes/grid.5515.4
112 schema:familyName Yeyati
113 schema:givenName A. Levy
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012276224316.05
115 rdf:type schema:Person
116 sg:person.013551772343.54 schema:affiliation N8bb30ca3c6354ef1b91983f2192f32b9
117 schema:familyName Quay
118 schema:givenName C. H. L.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013551772343.54
120 rdf:type schema:Person
121 sg:person.0611051357.16 schema:affiliation N1ebdd808ea1a4704a9d2d9ea1b80b2b5
122 schema:familyName Joyez
123 schema:givenName P.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611051357.16
125 rdf:type schema:Person
126 sg:pub.10.1038/17569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037537429
127 https://doi.org/10.1038/17569
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature04550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050909017
130 https://doi.org/10.1038/nature04550
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nature06822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002962233
133 https://doi.org/10.1038/nature06822
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nnano.2006.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033005599
136 https://doi.org/10.1038/nnano.2006.54
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nphys1537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018887380
139 https://doi.org/10.1038/nphys1537
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.2971034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023229072
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.43.3740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060557472
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.63.165314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003595932
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.68.035105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002711674
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.75.085305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053653144
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.78.024518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006824468
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.79.134518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014673344
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.79.224521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041203912
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.102.036804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754688
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.103.147004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035041720
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.104.026801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019523629
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.104.076805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756631
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.74.1843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001457380
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.88.106402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026884010
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.89.256801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015445586
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.90.087003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040741612
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.99.126602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046319878
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.99.127005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004599644
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/revmodphys.79.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045038063
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.284.5419.1508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062565394
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1143/jpsj.69.1812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063118629
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.457334.2 schema:alternateName CEA Saclay
184 schema:name Institut de Physique Théorique, CEA/Saclay, CNRS URA 2306, Orme des Merisiers, F-91191 Gif-sur-Yvette, France
185 Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Sud (Paris 11), Bât. 510, F-91405 Orsay, France
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.463720.4 schema:alternateName Pierre Aigrain Laboratory
188 schema:name Laboratoire Pierre Aigrain (LPA), CNRS UMR 8551, Université Pierre et Marie Curie (Paris VI)—Université Denis Diderot (Paris VII)—Ecole Normale Supérieure de Paris (ENS Paris), France
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.5515.4 schema:alternateName Autonomous University of Madrid
191 schema:name Departamento de Fı´sica Téorica de la Materia Condensada C-V, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...