Optical one-way quantum computing with a simulated valence-bond solid View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-11

AUTHORS

Rainer Kaltenbaek, Jonathan Lavoie, Bei Zeng, Stephen D. Bartlett, Kevin J. Resch

ABSTRACT

One-way quantum computation proceeds by sequentially measuring individual spins in an entangled many-spin resource state1. It remains a challenge, however, to efficiently produce such resources. Is it possible to reduce the task of their production to simply cooling a quantum many-body system to its ground state? Cluster states, the canonical resource for one-way quantum computing, do not naturally occur as ground states of physical systems2,3, leading to a significant effort to identify alternatives that do appear as ground states in spin lattices 4,5,6,7,8. An appealing candidate is a valence-bond-solid state described by Affleck, Kennedy, Lieb and Tasaki9 (AKLT). It is the unique, gapped ground state for a two-body Hamiltonian on a spin-1 chain, and can be used as a resource for one-way quantum computing 4,5,6,7. Here, we experimentally generate a photonic AKLT state and use it to implement single-qubit quantum logic gates. More... »

PAGES

850-854

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys1777

DOI

http://dx.doi.org/10.1038/nphys1777

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026005647


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, Canada N2L 3G1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaltenbaek", 
        "givenName": "Rainer", 
        "id": "sg:person.0576270073.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576270073.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, Canada N2L 3G1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lavoie", 
        "givenName": "Jonathan", 
        "id": "sg:person.01367504133.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367504133.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Guelph", 
          "id": "https://www.grid.ac/institutes/grid.34429.38", 
          "name": [
            "Institute for Quantum Computing and the Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada N2L 3G1", 
            "Department of Mathematics & Statistics, University of Guelph, Guelph, Canada N1G 2W1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeng", 
        "givenName": "Bei", 
        "id": "sg:person.0667360406.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667360406.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sydney", 
          "id": "https://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bartlett", 
        "givenName": "Stephen D.", 
        "id": "sg:person.0642111533.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642111533.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, Canada N2L 3G1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Resch", 
        "givenName": "Kevin J.", 
        "id": "sg:person.01362531266.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362531266.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.78.042335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000482787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.042335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000482787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003219712", 
          "https://doi.org/10.1038/nature03347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003219712", 
          "https://doi.org/10.1038/nature03347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.030401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006864004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.030401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006864004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.010501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006922166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.010501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006922166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.020501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007234269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.020501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007234269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.220501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008508035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.220501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008508035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/7/073051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016432365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/7/073051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016432365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aop.2006.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016660399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500349414552171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017404526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.73.052306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017642953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.73.052306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017642953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.220503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023389498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.220503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023389498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.040302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023426131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.040302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023426131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.010502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023522954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.010502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023522954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027739000", 
          "https://doi.org/10.1038/nature05346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027739000", 
          "https://doi.org/10.1038/nature05346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.60.r773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027832658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.60.r773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027832658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.060504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028055030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.060504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028055030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.042306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032115696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.042306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032115696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14789940801912366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032569332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.240504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034979678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.240504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034979678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.012328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035694977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.012328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035694977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.210501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039467483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.210501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039467483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.052315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039705799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.052315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039705799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.060302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048845382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.060302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048845382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4877(06)80014-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050797986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.040303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060507978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.040303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060507978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.190501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.190501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.3181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.3181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.4656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.4656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460456"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-11", 
    "datePublishedReg": "2010-11-01", 
    "description": "One-way quantum computation proceeds by sequentially measuring individual spins in an entangled many-spin resource state1. It remains a challenge, however, to efficiently produce such resources. Is it possible to reduce the task of their production to simply cooling a quantum many-body system to its ground state? Cluster states, the canonical resource for one-way quantum computing, do not naturally occur as ground states of physical systems2,3, leading to a significant effort to identify alternatives that do appear as ground states in spin lattices 4,5,6,7,8. An appealing candidate is a valence-bond-solid state described by Affleck, Kennedy, Lieb and Tasaki9 (AKLT). It is the unique, gapped ground state for a two-body Hamiltonian on a spin-1 chain, and can be used as a resource for one-way quantum computing 4,5,6,7. Here, we experimentally generate a photonic AKLT state and use it to implement single-qubit quantum logic gates.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys1777", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Optical one-way quantum computing with a simulated valence-bond solid", 
    "pagination": "850-854", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7be3edb592eef65a2cf2f5325751af97ad1b267cb456c13c5549bc6fae61afec"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys1777"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026005647"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys1777", 
      "https://app.dimensions.ai/details/publication/pub.1026005647"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nphys1777"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys1777'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys1777'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys1777'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys1777'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys1777 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N732e499fdb0244d4b4dbbe2bd5023c21
4 schema:citation sg:pub.10.1038/nature03347
5 sg:pub.10.1038/nature05346
6 https://doi.org/10.1016/j.aop.2006.01.012
7 https://doi.org/10.1016/s0034-4877(06)80014-5
8 https://doi.org/10.1080/09500349414552171
9 https://doi.org/10.1080/14789940801912366
10 https://doi.org/10.1088/1367-2630/11/7/073051
11 https://doi.org/10.1103/physreva.60.r773
12 https://doi.org/10.1103/physreva.70.060302
13 https://doi.org/10.1103/physreva.71.042306
14 https://doi.org/10.1103/physreva.73.052306
15 https://doi.org/10.1103/physreva.74.040302
16 https://doi.org/10.1103/physreva.76.052315
17 https://doi.org/10.1103/physreva.78.042335
18 https://doi.org/10.1103/physreva.82.012328
19 https://doi.org/10.1103/physreva.82.040303
20 https://doi.org/10.1103/physrevlett.100.060504
21 https://doi.org/10.1103/physrevlett.100.210501
22 https://doi.org/10.1103/physrevlett.101.010502
23 https://doi.org/10.1103/physrevlett.102.190501
24 https://doi.org/10.1103/physrevlett.102.220501
25 https://doi.org/10.1103/physrevlett.103.240504
26 https://doi.org/10.1103/physrevlett.104.020501
27 https://doi.org/10.1103/physrevlett.59.799
28 https://doi.org/10.1103/physrevlett.65.3181
29 https://doi.org/10.1103/physrevlett.76.4656
30 https://doi.org/10.1103/physrevlett.86.5188
31 https://doi.org/10.1103/physrevlett.88.030401
32 https://doi.org/10.1103/physrevlett.95.010501
33 https://doi.org/10.1103/physrevlett.98.220503
34 https://doi.org/10.1126/science.1177838
35 schema:datePublished 2010-11
36 schema:datePublishedReg 2010-11-01
37 schema:description One-way quantum computation proceeds by sequentially measuring individual spins in an entangled many-spin resource state1. It remains a challenge, however, to efficiently produce such resources. Is it possible to reduce the task of their production to simply cooling a quantum many-body system to its ground state? Cluster states, the canonical resource for one-way quantum computing, do not naturally occur as ground states of physical systems2,3, leading to a significant effort to identify alternatives that do appear as ground states in spin lattices 4,5,6,7,8. An appealing candidate is a valence-bond-solid state described by Affleck, Kennedy, Lieb and Tasaki9 (AKLT). It is the unique, gapped ground state for a two-body Hamiltonian on a spin-1 chain, and can be used as a resource for one-way quantum computing 4,5,6,7. Here, we experimentally generate a photonic AKLT state and use it to implement single-qubit quantum logic gates.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N13e65dd580cc4ca287b49917c54fe9ff
42 N4643f12d1bf54dbf88cd51034077b983
43 sg:journal.1034717
44 schema:name Optical one-way quantum computing with a simulated valence-bond solid
45 schema:pagination 850-854
46 schema:productId N04754251c5db4dfaa851e3fe51633719
47 N3e4acb1c191e4660a21bedc38d06a8f5
48 Nc3ab00a3ae9c499aadab0932424d442e
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026005647
50 https://doi.org/10.1038/nphys1777
51 schema:sdDatePublished 2019-04-10T15:38
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N219ea09d0f7349e3bef7a5595055c733
54 schema:url http://www.nature.com/articles/nphys1777
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N04754251c5db4dfaa851e3fe51633719 schema:name dimensions_id
59 schema:value pub.1026005647
60 rdf:type schema:PropertyValue
61 N13e65dd580cc4ca287b49917c54fe9ff schema:issueNumber 11
62 rdf:type schema:PublicationIssue
63 N219ea09d0f7349e3bef7a5595055c733 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N2ac055912d154b89ba618641a1b4bb63 rdf:first sg:person.01362531266.25
66 rdf:rest rdf:nil
67 N301bdf78f58c4e6e9bcf15c42ff43e49 rdf:first sg:person.01367504133.50
68 rdf:rest Necd910d328404002b09afa056ed340b4
69 N3e4acb1c191e4660a21bedc38d06a8f5 schema:name readcube_id
70 schema:value 7be3edb592eef65a2cf2f5325751af97ad1b267cb456c13c5549bc6fae61afec
71 rdf:type schema:PropertyValue
72 N4643f12d1bf54dbf88cd51034077b983 schema:volumeNumber 6
73 rdf:type schema:PublicationVolume
74 N732e499fdb0244d4b4dbbe2bd5023c21 rdf:first sg:person.0576270073.20
75 rdf:rest N301bdf78f58c4e6e9bcf15c42ff43e49
76 N76f21d75283a485c8b49e929d6051824 rdf:first sg:person.0642111533.53
77 rdf:rest N2ac055912d154b89ba618641a1b4bb63
78 Nc3ab00a3ae9c499aadab0932424d442e schema:name doi
79 schema:value 10.1038/nphys1777
80 rdf:type schema:PropertyValue
81 Necd910d328404002b09afa056ed340b4 rdf:first sg:person.0667360406.43
82 rdf:rest N76f21d75283a485c8b49e929d6051824
83 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
84 schema:name Physical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
87 schema:name Quantum Physics
88 rdf:type schema:DefinedTerm
89 sg:journal.1034717 schema:issn 1745-2473
90 1745-2481
91 schema:name Nature Physics
92 rdf:type schema:Periodical
93 sg:person.01362531266.25 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
94 schema:familyName Resch
95 schema:givenName Kevin J.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362531266.25
97 rdf:type schema:Person
98 sg:person.01367504133.50 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
99 schema:familyName Lavoie
100 schema:givenName Jonathan
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367504133.50
102 rdf:type schema:Person
103 sg:person.0576270073.20 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
104 schema:familyName Kaltenbaek
105 schema:givenName Rainer
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576270073.20
107 rdf:type schema:Person
108 sg:person.0642111533.53 schema:affiliation https://www.grid.ac/institutes/grid.1013.3
109 schema:familyName Bartlett
110 schema:givenName Stephen D.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642111533.53
112 rdf:type schema:Person
113 sg:person.0667360406.43 schema:affiliation https://www.grid.ac/institutes/grid.34429.38
114 schema:familyName Zeng
115 schema:givenName Bei
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667360406.43
117 rdf:type schema:Person
118 sg:pub.10.1038/nature03347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003219712
119 https://doi.org/10.1038/nature03347
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature05346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027739000
122 https://doi.org/10.1038/nature05346
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.aop.2006.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016660399
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0034-4877(06)80014-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050797986
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1080/09500349414552171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017404526
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1080/14789940801912366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032569332
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1088/1367-2630/11/7/073051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016432365
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physreva.60.r773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027832658
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physreva.70.060302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048845382
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physreva.71.042306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032115696
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physreva.73.052306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017642953
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physreva.74.040302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023426131
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physreva.76.052315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039705799
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physreva.78.042335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000482787
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physreva.82.012328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035694977
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreva.82.040303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060507978
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.100.060504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028055030
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevlett.100.210501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039467483
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.101.010502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023522954
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.102.190501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755357
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.102.220501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008508035
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.103.240504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034979678
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevlett.104.020501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007234269
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.59.799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796291
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.65.3181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801732
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.76.4656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813373
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.86.5188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823152
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.88.030401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006864004
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.95.010501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006922166
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.98.220503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023389498
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1126/science.1177838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460456
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.1013.3 schema:alternateName University of Sydney
183 schema:name School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.34429.38 schema:alternateName University of Guelph
186 schema:name Department of Mathematics & Statistics, University of Guelph, Guelph, Canada N1G 2W1
187 Institute for Quantum Computing and the Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada N2L 3G1
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
190 schema:name Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, Canada N2L 3G1
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...