Soliton-pair dynamics in patterned ferromagnetic ellipses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Kristen S. Buchanan, Pierre E. Roy, Marcos Grimsditch, Frank Y. Fradin, Konstantin Yu. Guslienko, Sam D. Bader, Valentyn Novosad

ABSTRACT

Confinement alters the energy landscape of nanoscale magnets, leading to the appearance of unusual magnetic states, such as vortices, for example. Many basic questions concerning dynamical and interaction effects remain unanswered, and nanomagnets are convenient model systems for studying these fundamental physical phenomena. A single vortex in restricted geometry, also known as a non-localized soliton, possesses a characteristic translational excitation mode that corresponds to spiral-like motion of the vortex core around its equilibrium position. Here, we investigate, by a microwave reflection technique, the dynamics of magnetic soliton pairs confined in lithographically defined, ferromagnetic Permalloy ellipses. Through a comparison with micromagnetic simulations, the observed strong resonances in the subgigahertz frequency range can be assigned to the translational modes of vortex pairs with parallel or antiparallel core polarizations. Vortex polarizations play a negligible role in the static interaction between two vortices, but their effect dominates the dynamics. More... »

PAGES

172

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys173

DOI

http://dx.doi.org/10.1038/nphys173

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032300811


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Materials Science Division and Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buchanan", 
        "givenName": "Kristen S.", 
        "id": "sg:person.0752042213.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752042213.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Uppsala University", 
          "id": "https://www.grid.ac/institutes/grid.8993.b", 
          "name": [
            "Materials Science Division and Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA", 
            "Department of Engineering Science, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roy", 
        "givenName": "Pierre E.", 
        "id": "sg:person.015425751621.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015425751621.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Materials Science Division and Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grimsditch", 
        "givenName": "Marcos", 
        "id": "sg:person.01131400036.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131400036.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Materials Science Division and Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fradin", 
        "givenName": "Frank Y.", 
        "id": "sg:person.0626051551.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626051551.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Materials Science Division and Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guslienko", 
        "givenName": "Konstantin Yu.", 
        "id": "sg:person.0733671454.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733671454.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Materials Science Division and Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bader", 
        "givenName": "Sam D.", 
        "id": "sg:person.011113222021.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011113222021.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Materials Science Division and Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Novosad", 
        "givenName": "Valentyn", 
        "id": "sg:person.01173753335.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173753335.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0370-1573(90)90130-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005739699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(90)90130-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005739699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/e10051-002-0010-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014790410", 
          "https://doi.org/10.1140/e10051-002-0010-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.2498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027936605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.2498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027936605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028432339", 
          "https://doi.org/10.1038/nature03009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028432339", 
          "https://doi.org/10.1038/nature03009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.020403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032269022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.020403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032269022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.024455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040143496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.024455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040143496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-40907-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042153561", 
          "https://doi.org/10.1007/3-540-40907-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-40907-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042153561", 
          "https://doi.org/10.1007/3-540-40907-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(01)01363-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044597653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045174605", 
          "https://doi.org/10.1038/nature747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045174605", 
          "https://doi.org/10.1038/nature747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1929078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050065301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1450816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057707746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1860971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057828861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.26.3758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.26.3758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.5992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.5992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.12711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.12711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.024414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060601826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.024414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060601826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.052407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.052407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.184431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060604936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.184431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060604936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.214404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060609742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.214404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060609742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.012404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060610651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.012404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060610651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.172404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060611637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.172404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060611637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.024427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060614182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.024427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060614182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.024427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060614182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.30.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060777021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.30.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060777021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.2625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.2625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.077207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.077207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.027205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.027205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1071021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062446475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1075302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062446857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1095068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.289.5481.930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062570592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511617034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098706137"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "Confinement alters the energy landscape of nanoscale magnets, leading to the appearance of unusual magnetic states, such as vortices, for example. Many basic questions concerning dynamical and interaction effects remain unanswered, and nanomagnets are convenient model systems for studying these fundamental physical phenomena. A single vortex in restricted geometry, also known as a non-localized soliton, possesses a characteristic translational excitation mode that corresponds to spiral-like motion of the vortex core around its equilibrium position. Here, we investigate, by a microwave reflection technique, the dynamics of magnetic soliton pairs confined in lithographically defined, ferromagnetic Permalloy ellipses. Through a comparison with micromagnetic simulations, the observed strong resonances in the subgigahertz frequency range can be assigned to the translational modes of vortex pairs with parallel or antiparallel core polarizations. Vortex polarizations play a negligible role in the static interaction between two vortices, but their effect dominates the dynamics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys173", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Soliton-pair dynamics in patterned ferromagnetic ellipses", 
    "pagination": "172", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "99dfe23768842af4b600440b8c4804a7397824420607a3de337e8468c58a7829"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys173"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032300811"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys173", 
      "https://app.dimensions.ai/details/publication/pub.1032300811"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29204_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys173"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys173'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys173'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys173'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys173'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys173 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N6e1bff7222da409d983575b658194b9d
4 schema:citation sg:pub.10.1007/3-540-40907-6
5 sg:pub.10.1038/nature03009
6 sg:pub.10.1038/nature747
7 sg:pub.10.1140/e10051-002-0010-1
8 https://doi.org/10.1016/0370-1573(90)90130-t
9 https://doi.org/10.1016/s0304-8853(01)01363-4
10 https://doi.org/10.1017/cbo9780511617034
11 https://doi.org/10.1063/1.1450816
12 https://doi.org/10.1063/1.1860971
13 https://doi.org/10.1063/1.1929078
14 https://doi.org/10.1103/physrevb.26.3758
15 https://doi.org/10.1103/physrevb.43.5992
16 https://doi.org/10.1103/physrevb.50.12711
17 https://doi.org/10.1103/physrevb.65.024414
18 https://doi.org/10.1103/physrevb.66.052407
19 https://doi.org/10.1103/physrevb.66.184431
20 https://doi.org/10.1103/physrevb.67.020403
21 https://doi.org/10.1103/physrevb.69.214404
22 https://doi.org/10.1103/physrevb.70.012404
23 https://doi.org/10.1103/physrevb.70.172404
24 https://doi.org/10.1103/physrevb.72.024427
25 https://doi.org/10.1103/physrevb.72.024455
26 https://doi.org/10.1103/physrevlett.30.230
27 https://doi.org/10.1103/physrevlett.53.190
28 https://doi.org/10.1103/physrevlett.66.2625
29 https://doi.org/10.1103/physrevlett.83.1042
30 https://doi.org/10.1103/physrevlett.83.2498
31 https://doi.org/10.1103/physrevlett.93.077207
32 https://doi.org/10.1103/physrevlett.94.027205
33 https://doi.org/10.1126/science.1071021
34 https://doi.org/10.1126/science.1075302
35 https://doi.org/10.1126/science.1095068
36 https://doi.org/10.1126/science.289.5481.930
37 schema:datePublished 2005-12
38 schema:datePublishedReg 2005-12-01
39 schema:description Confinement alters the energy landscape of nanoscale magnets, leading to the appearance of unusual magnetic states, such as vortices, for example. Many basic questions concerning dynamical and interaction effects remain unanswered, and nanomagnets are convenient model systems for studying these fundamental physical phenomena. A single vortex in restricted geometry, also known as a non-localized soliton, possesses a characteristic translational excitation mode that corresponds to spiral-like motion of the vortex core around its equilibrium position. Here, we investigate, by a microwave reflection technique, the dynamics of magnetic soliton pairs confined in lithographically defined, ferromagnetic Permalloy ellipses. Through a comparison with micromagnetic simulations, the observed strong resonances in the subgigahertz frequency range can be assigned to the translational modes of vortex pairs with parallel or antiparallel core polarizations. Vortex polarizations play a negligible role in the static interaction between two vortices, but their effect dominates the dynamics.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N120186c5e91f44109fcd74cfe50d6825
44 Nc2afb9acbbdc471dbdbb0a5426aa891e
45 sg:journal.1034717
46 schema:name Soliton-pair dynamics in patterned ferromagnetic ellipses
47 schema:pagination 172
48 schema:productId N5c1263842b48460f83e80597f48bcf85
49 N9ab8363e14e045f1b6a8c026b68d44fc
50 Na9e49d5779aa45fbaa58ac658475a5da
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032300811
52 https://doi.org/10.1038/nphys173
53 schema:sdDatePublished 2019-04-11T11:54
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Ndab0a56121ba4f2ba5f3e5f00eb4d102
56 schema:url https://www.nature.com/articles/nphys173
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N120186c5e91f44109fcd74cfe50d6825 schema:issueNumber 3
61 rdf:type schema:PublicationIssue
62 N5c1263842b48460f83e80597f48bcf85 schema:name dimensions_id
63 schema:value pub.1032300811
64 rdf:type schema:PropertyValue
65 N6e1bff7222da409d983575b658194b9d rdf:first sg:person.0752042213.68
66 rdf:rest N9bd98a657ebf46e1bb74ae8532f43259
67 N8371f9937f7c4c1f89c21d951bc323dd rdf:first sg:person.0626051551.55
68 rdf:rest Na930bb0819cd4bd997f265696499d187
69 N9ab8363e14e045f1b6a8c026b68d44fc schema:name readcube_id
70 schema:value 99dfe23768842af4b600440b8c4804a7397824420607a3de337e8468c58a7829
71 rdf:type schema:PropertyValue
72 N9bd98a657ebf46e1bb74ae8532f43259 rdf:first sg:person.015425751621.03
73 rdf:rest Nc9f454b4331446f5a3e1054f71473cdb
74 Na45700acbc3e413797518311b9f0b2db rdf:first sg:person.01173753335.33
75 rdf:rest rdf:nil
76 Na930bb0819cd4bd997f265696499d187 rdf:first sg:person.0733671454.69
77 rdf:rest Nbd5b4a9e59414b7f9efd7dbe134a2290
78 Na9e49d5779aa45fbaa58ac658475a5da schema:name doi
79 schema:value 10.1038/nphys173
80 rdf:type schema:PropertyValue
81 Nbd5b4a9e59414b7f9efd7dbe134a2290 rdf:first sg:person.011113222021.37
82 rdf:rest Na45700acbc3e413797518311b9f0b2db
83 Nc2afb9acbbdc471dbdbb0a5426aa891e schema:volumeNumber 1
84 rdf:type schema:PublicationVolume
85 Nc9f454b4331446f5a3e1054f71473cdb rdf:first sg:person.01131400036.64
86 rdf:rest N8371f9937f7c4c1f89c21d951bc323dd
87 Ndab0a56121ba4f2ba5f3e5f00eb4d102 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
90 schema:name Physical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
93 schema:name Other Physical Sciences
94 rdf:type schema:DefinedTerm
95 sg:journal.1034717 schema:issn 1745-2473
96 1745-2481
97 schema:name Nature Physics
98 rdf:type schema:Periodical
99 sg:person.011113222021.37 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
100 schema:familyName Bader
101 schema:givenName Sam D.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011113222021.37
103 rdf:type schema:Person
104 sg:person.01131400036.64 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
105 schema:familyName Grimsditch
106 schema:givenName Marcos
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131400036.64
108 rdf:type schema:Person
109 sg:person.01173753335.33 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
110 schema:familyName Novosad
111 schema:givenName Valentyn
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173753335.33
113 rdf:type schema:Person
114 sg:person.015425751621.03 schema:affiliation https://www.grid.ac/institutes/grid.8993.b
115 schema:familyName Roy
116 schema:givenName Pierre E.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015425751621.03
118 rdf:type schema:Person
119 sg:person.0626051551.55 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
120 schema:familyName Fradin
121 schema:givenName Frank Y.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626051551.55
123 rdf:type schema:Person
124 sg:person.0733671454.69 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
125 schema:familyName Guslienko
126 schema:givenName Konstantin Yu.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733671454.69
128 rdf:type schema:Person
129 sg:person.0752042213.68 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
130 schema:familyName Buchanan
131 schema:givenName Kristen S.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752042213.68
133 rdf:type schema:Person
134 sg:pub.10.1007/3-540-40907-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042153561
135 https://doi.org/10.1007/3-540-40907-6
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature03009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028432339
138 https://doi.org/10.1038/nature03009
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nature747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045174605
141 https://doi.org/10.1038/nature747
142 rdf:type schema:CreativeWork
143 sg:pub.10.1140/e10051-002-0010-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014790410
144 https://doi.org/10.1140/e10051-002-0010-1
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/0370-1573(90)90130-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1005739699
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0304-8853(01)01363-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044597653
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1017/cbo9780511617034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098706137
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.1450816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057707746
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.1860971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057828861
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.1929078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050065301
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevb.26.3758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060531374
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevb.43.5992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060557794
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevb.50.12711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060572689
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevb.65.024414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060601826
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevb.66.052407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060603908
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevb.66.184431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060604936
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevb.67.020403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032269022
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevb.69.214404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060609742
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevb.70.012404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060610651
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevb.70.172404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060611637
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevb.72.024427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060614182
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.72.024455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040143496
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.30.230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060777021
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.53.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790640
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.66.2625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802523
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.83.1042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819798
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.83.2498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027936605
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.93.077207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828826
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.94.027205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829717
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1126/science.1071021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446475
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1126/science.1075302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446857
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1126/science.1095068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449415
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1126/science.289.5481.930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062570592
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.187073.a schema:alternateName Argonne National Laboratory
205 schema:name Materials Science Division and Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.8993.b schema:alternateName Uppsala University
208 schema:name Department of Engineering Science, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden
209 Materials Science Division and Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...