Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-06

AUTHORS

Bobak Mosadegh, Chuan-Hsien Kuo, Yi-Chung Tung, Yu-suke Torisawa, Tommaso Bersano-Begey, Hossein Tavana, Shuichi Takayama

ABSTRACT

A critical need for enhancing usability and capabilities of microfluidic technologies is the development of standardized, scalable, and versatile control systems1,2. Electronically controlled valves and pumps typically used for dynamic flow regulation, although useful, can limit convenience, scalability, and robustness3-5. This shortcoming has motivated development of device-embedded non-electrical flow-control systems. Existing approaches to regulate operation timing on-chip, however, still require external signals such as timed generation of fluid flow, bubbles, liquid plugs or droplets, or an alteration of chemical compositions or temperature6-16. Here, we describe a strategy to provide device-embedded flow switching and clocking functions. Physical gaps and cavities interconnected by holes are fabricated into a three-layer elastomer structure to form networks of fluidic gates that can spontaneously generate cascading and oscillatory flow output using only a constant flow of Newtonian fluids as the device input. The resulting microfluidic substrate architecture is simple, scalable, and should be applicable to various materials. This flow-powered fluidic gating scheme brings the autonomous signal processing ability of microelectronic circuits to microfluidics where there is the added diversity in current information of having distinct chemical or particulate species and richness in current operation of having chemical reactions and physical interactions. More... »

PAGES

433

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys1637

DOI

http://dx.doi.org/10.1038/nphys1637

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049579323

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20526435


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mosadegh", 
        "givenName": "Bobak", 
        "id": "sg:person.07440012027.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440012027.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109-2125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuo", 
        "givenName": "Chuan-Hsien", 
        "id": "sg:person.01207415333.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207415333.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tung", 
        "givenName": "Yi-Chung", 
        "id": "sg:person.01321203344.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321203344.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torisawa", 
        "givenName": "Yu-suke", 
        "id": "sg:person.01236155315.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236155315.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bersano-Begey", 
        "givenName": "Tommaso", 
        "id": "sg:person.01054737673.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054737673.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tavana", 
        "givenName": "Hossein", 
        "id": "sg:person.0671563404.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671563404.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, USA", 
            "Macromolecular Science and Engineering Center, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takayama", 
        "givenName": "Shuichi", 
        "id": "sg:person.0630123773.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630123773.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/b708764k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002070011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0404353101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003946672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005720187", 
          "https://doi.org/10.1038/nrm1016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005720187", 
          "https://doi.org/10.1038/nrm1016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-4247(98)00056-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017732169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b403906h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023646479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023863568", 
          "https://doi.org/10.1038/nature05058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023863568", 
          "https://doi.org/10.1038/nature05058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35007047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025343153", 
          "https://doi.org/10.1038/35007047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35007047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025343153", 
          "https://doi.org/10.1038/35007047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b801448p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028501857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0900043106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033422439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0960-1317/6/4/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035315376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0602890103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036666448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042380428", 
          "https://doi.org/10.1038/nphys1196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011419515576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048189997", 
          "https://doi.org/10.1023/a:1011419515576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1136907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050256912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0960-1317/4/4/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051104130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051519494", 
          "https://doi.org/10.1038/nphys1213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5463.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053301497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2435607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057857177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2234786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062078476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1083694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1134514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062454877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.175.4019.333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062504196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.1984.247.4.e564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081778517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/memsys.2008.4443721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093291779"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-06", 
    "datePublishedReg": "2010-06-01", 
    "description": "A critical need for enhancing usability and capabilities of microfluidic technologies is the development of standardized, scalable, and versatile control systems1,2. Electronically controlled valves and pumps typically used for dynamic flow regulation, although useful, can limit convenience, scalability, and robustness3-5. This shortcoming has motivated development of device-embedded non-electrical flow-control systems. Existing approaches to regulate operation timing on-chip, however, still require external signals such as timed generation of fluid flow, bubbles, liquid plugs or droplets, or an alteration of chemical compositions or temperature6-16. Here, we describe a strategy to provide device-embedded flow switching and clocking functions. Physical gaps and cavities interconnected by holes are fabricated into a three-layer elastomer structure to form networks of fluidic gates that can spontaneously generate cascading and oscillatory flow output using only a constant flow of Newtonian fluids as the device input. The resulting microfluidic substrate architecture is simple, scalable, and should be applicable to various materials. This flow-powered fluidic gating scheme brings the autonomous signal processing ability of microelectronic circuits to microfluidics where there is the added diversity in current information of having distinct chemical or particulate species and richness in current operation of having chemical reactions and physical interactions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys1637", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2540981", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices", 
    "pagination": "433", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ec2ee7ca113c0ebb076f648dfa3752095da6ea58fa946fc5010d45d35a13eeec"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20526435"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101235387"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys1637"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049579323"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys1637", 
      "https://app.dimensions.ai/details/publication/pub.1049579323"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54302_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys1637"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys1637'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys1637'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys1637'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys1637'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys1637 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N362663e2e11d4452b5a69476d1dfa0c9
4 schema:citation sg:pub.10.1023/a:1011419515576
5 sg:pub.10.1038/35007047
6 sg:pub.10.1038/nature05058
7 sg:pub.10.1038/nphys1196
8 sg:pub.10.1038/nphys1213
9 sg:pub.10.1038/nrm1016
10 https://doi.org/10.1016/s0924-4247(98)00056-9
11 https://doi.org/10.1039/b403906h
12 https://doi.org/10.1039/b708764k
13 https://doi.org/10.1039/b801448p
14 https://doi.org/10.1063/1.2435607
15 https://doi.org/10.1073/pnas.0404353101
16 https://doi.org/10.1073/pnas.0602890103
17 https://doi.org/10.1073/pnas.0900043106
18 https://doi.org/10.1088/0960-1317/4/4/004
19 https://doi.org/10.1088/0960-1317/6/4/006
20 https://doi.org/10.1109/memsys.2008.4443721
21 https://doi.org/10.1115/1.2234786
22 https://doi.org/10.1126/science.1083694
23 https://doi.org/10.1126/science.1134514
24 https://doi.org/10.1126/science.1136907
25 https://doi.org/10.1126/science.175.4019.333
26 https://doi.org/10.1126/science.288.5463.113
27 https://doi.org/10.1152/ajpendo.1984.247.4.e564
28 schema:datePublished 2010-06
29 schema:datePublishedReg 2010-06-01
30 schema:description A critical need for enhancing usability and capabilities of microfluidic technologies is the development of standardized, scalable, and versatile control systems1,2. Electronically controlled valves and pumps typically used for dynamic flow regulation, although useful, can limit convenience, scalability, and robustness3-5. This shortcoming has motivated development of device-embedded non-electrical flow-control systems. Existing approaches to regulate operation timing on-chip, however, still require external signals such as timed generation of fluid flow, bubbles, liquid plugs or droplets, or an alteration of chemical compositions or temperature6-16. Here, we describe a strategy to provide device-embedded flow switching and clocking functions. Physical gaps and cavities interconnected by holes are fabricated into a three-layer elastomer structure to form networks of fluidic gates that can spontaneously generate cascading and oscillatory flow output using only a constant flow of Newtonian fluids as the device input. The resulting microfluidic substrate architecture is simple, scalable, and should be applicable to various materials. This flow-powered fluidic gating scheme brings the autonomous signal processing ability of microelectronic circuits to microfluidics where there is the added diversity in current information of having distinct chemical or particulate species and richness in current operation of having chemical reactions and physical interactions.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N331cd71c463b486396c7f7cb7ef0cd33
35 N8c97d9bbf65f42a5845065c2a29ce21d
36 sg:journal.1034717
37 schema:name Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices
38 schema:pagination 433
39 schema:productId N337acf41ac15489288e00d4d68c6e654
40 N69bd5681ea4743a89396629aab473867
41 N868a84f604054bd99f9badcf63f89e29
42 N910ce89c8ab14d8f9c3c79443d4010ce
43 Nbb810b7ba9fe4d59ad6a84a22824f4ba
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049579323
45 https://doi.org/10.1038/nphys1637
46 schema:sdDatePublished 2019-04-11T10:16
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N611ddc6c2b4a4ea9b9215a6a8ac3cc58
49 schema:url https://www.nature.com/articles/nphys1637
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N215cd8bb5c6644529ef1c428c22a95d9 rdf:first sg:person.01054737673.90
54 rdf:rest Nefa92816e1eb48bab12c14dfc5235e4c
55 N331cd71c463b486396c7f7cb7ef0cd33 schema:issueNumber 6
56 rdf:type schema:PublicationIssue
57 N337acf41ac15489288e00d4d68c6e654 schema:name nlm_unique_id
58 schema:value 101235387
59 rdf:type schema:PropertyValue
60 N362663e2e11d4452b5a69476d1dfa0c9 rdf:first sg:person.07440012027.77
61 rdf:rest Ncaebebf28d1f459ba6d9b604b2927605
62 N4a50fc47be1f476cbf9eb2f5700f4f3a rdf:first sg:person.01321203344.82
63 rdf:rest N76c1e3030493485087ca085dfc50e46f
64 N611ddc6c2b4a4ea9b9215a6a8ac3cc58 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N69bd5681ea4743a89396629aab473867 schema:name pubmed_id
67 schema:value 20526435
68 rdf:type schema:PropertyValue
69 N76c1e3030493485087ca085dfc50e46f rdf:first sg:person.01236155315.85
70 rdf:rest N215cd8bb5c6644529ef1c428c22a95d9
71 N868a84f604054bd99f9badcf63f89e29 schema:name readcube_id
72 schema:value ec2ee7ca113c0ebb076f648dfa3752095da6ea58fa946fc5010d45d35a13eeec
73 rdf:type schema:PropertyValue
74 N8c97d9bbf65f42a5845065c2a29ce21d schema:volumeNumber 6
75 rdf:type schema:PublicationVolume
76 N910ce89c8ab14d8f9c3c79443d4010ce schema:name dimensions_id
77 schema:value pub.1049579323
78 rdf:type schema:PropertyValue
79 Nb90f4f0e12f645a9a51f249e7431df3c rdf:first sg:person.0630123773.47
80 rdf:rest rdf:nil
81 Nbb810b7ba9fe4d59ad6a84a22824f4ba schema:name doi
82 schema:value 10.1038/nphys1637
83 rdf:type schema:PropertyValue
84 Ncaebebf28d1f459ba6d9b604b2927605 rdf:first sg:person.01207415333.59
85 rdf:rest N4a50fc47be1f476cbf9eb2f5700f4f3a
86 Nefa92816e1eb48bab12c14dfc5235e4c rdf:first sg:person.0671563404.12
87 rdf:rest Nb90f4f0e12f645a9a51f249e7431df3c
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
92 schema:name Interdisciplinary Engineering
93 rdf:type schema:DefinedTerm
94 sg:grant.2540981 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys1637
95 rdf:type schema:MonetaryGrant
96 sg:journal.1034717 schema:issn 1745-2473
97 1745-2481
98 schema:name Nature Physics
99 rdf:type schema:Periodical
100 sg:person.01054737673.90 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
101 schema:familyName Bersano-Begey
102 schema:givenName Tommaso
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054737673.90
104 rdf:type schema:Person
105 sg:person.01207415333.59 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
106 schema:familyName Kuo
107 schema:givenName Chuan-Hsien
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207415333.59
109 rdf:type schema:Person
110 sg:person.01236155315.85 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
111 schema:familyName Torisawa
112 schema:givenName Yu-suke
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236155315.85
114 rdf:type schema:Person
115 sg:person.01321203344.82 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
116 schema:familyName Tung
117 schema:givenName Yi-Chung
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321203344.82
119 rdf:type schema:Person
120 sg:person.0630123773.47 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
121 schema:familyName Takayama
122 schema:givenName Shuichi
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630123773.47
124 rdf:type schema:Person
125 sg:person.0671563404.12 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
126 schema:familyName Tavana
127 schema:givenName Hossein
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671563404.12
129 rdf:type schema:Person
130 sg:person.07440012027.77 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
131 schema:familyName Mosadegh
132 schema:givenName Bobak
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440012027.77
134 rdf:type schema:Person
135 sg:pub.10.1023/a:1011419515576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048189997
136 https://doi.org/10.1023/a:1011419515576
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/35007047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025343153
139 https://doi.org/10.1038/35007047
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nature05058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023863568
142 https://doi.org/10.1038/nature05058
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nphys1196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042380428
145 https://doi.org/10.1038/nphys1196
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nphys1213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051519494
148 https://doi.org/10.1038/nphys1213
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nrm1016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005720187
151 https://doi.org/10.1038/nrm1016
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0924-4247(98)00056-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017732169
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1039/b403906h schema:sameAs https://app.dimensions.ai/details/publication/pub.1023646479
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1039/b708764k schema:sameAs https://app.dimensions.ai/details/publication/pub.1002070011
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1039/b801448p schema:sameAs https://app.dimensions.ai/details/publication/pub.1028501857
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.2435607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057857177
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1073/pnas.0404353101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003946672
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1073/pnas.0602890103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036666448
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1073/pnas.0900043106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033422439
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/0960-1317/4/4/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051104130
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1088/0960-1317/6/4/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035315376
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/memsys.2008.4443721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093291779
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1115/1.2234786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062078476
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.1083694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448041
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.1134514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454877
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1126/science.1136907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050256912
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1126/science.175.4019.333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062504196
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1126/science.288.5463.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053301497
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1152/ajpendo.1984.247.4.e564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081778517
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
190 schema:name Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, USA
191 Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109-2125, USA
192 Macromolecular Science and Engineering Center, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, USA
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...