Correlation-induced single-flux-quantum penetration in quantum rings View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-03

AUTHORS

A. D. Wieck, A. J. M. Giesbers, D. Reuter, G. Biasiol, J. C. Maan, L. Sorba, M. I. Katsnelson, U. Zeitler

ABSTRACT

The confined electronic states of mesoscopic structures in a magnetic field are arranged in Landau levels consisting of spatially discrete eigenstates. These Landau orbits are the quantum mechanical analogue of classical cyclotron orbits. Here we present magnetoconductance oscillations in semiconductor rings, which visualize the spatial discreteness of the Landau orbits in high magnetic fields (typically B>2 T). We will show that these oscillations are caused by the flux-quantized, discrete electronic size of the ring leading to a corresponding modulation of its two-point conductance. The oscillation period is given by the number of flux quanta penetrating the conducting area of the structure. These high-field oscillations are distinctively different from the well-known Aharonov–Bohm effect1, where, most generally, the penetration of individual flux quanta h/e through a nanostructure causes periodic crossings of field-dependent energy levels, which give rise to magneto-quantum oscillations in its conductance2,3,4. More... »

PAGES

173

References to SciGraph publications

  • 2003. Quantum Mechanics in Quantum Rings in ADVANCES IN SOLID STATE PHYSICS
  • 2001-10. Energy spectra of quantum rings in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nphys1517

    DOI

    http://dx.doi.org/10.1038/nphys1517

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007129574


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ruhr University Bochum", 
              "id": "https://www.grid.ac/institutes/grid.5570.7", 
              "name": [
                "Lehrstuhl f\u00fcr Angewandte Festk\u00f6rperphysik, Ruhr-Universit\u00e4t Bochum, Universit\u00e4tstra\u00dfe 150, 44780 Bochum, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wieck", 
            "givenName": "A. D.", 
            "id": "sg:person.01052317412.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052317412.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Radboud University Nijmegen", 
              "id": "https://www.grid.ac/institutes/grid.5590.9", 
              "name": [
                "High Field Magnet Laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giesbers", 
            "givenName": "A. J. M.", 
            "id": "sg:person.014370525277.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014370525277.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ruhr University Bochum", 
              "id": "https://www.grid.ac/institutes/grid.5570.7", 
              "name": [
                "Lehrstuhl f\u00fcr Angewandte Festk\u00f6rperphysik, Ruhr-Universit\u00e4t Bochum, Universit\u00e4tstra\u00dfe 150, 44780 Bochum, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reuter", 
            "givenName": "D.", 
            "id": "sg:person.01372623561.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372623561.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "AREA Science Park", 
              "id": "https://www.grid.ac/institutes/grid.419994.8", 
              "name": [
                "Laboratorio Nazionale TASC INFM-CNR, Area Science park, 34012 Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Biasiol", 
            "givenName": "G.", 
            "id": "sg:person.0732052514.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732052514.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Radboud University Nijmegen", 
              "id": "https://www.grid.ac/institutes/grid.5590.9", 
              "name": [
                "High Field Magnet Laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maan", 
            "givenName": "J. C.", 
            "id": "sg:person.010524013447.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010524013447.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Scuola Normale Superiore di Pisa", 
              "id": "https://www.grid.ac/institutes/grid.6093.c", 
              "name": [
                "Laboratorio Nazionale TASC INFM-CNR, Area Science park, 34012 Trieste, Italy", 
                "NEST INFM-CNR and Scuola Normale Superiore, 56126 Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sorba", 
            "givenName": "L.", 
            "id": "sg:person.0606465640.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606465640.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Radboud University Nijmegen", 
              "id": "https://www.grid.ac/institutes/grid.5590.9", 
              "name": [
                "Theory of Condensed Matter, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Katsnelson", 
            "givenName": "M. I.", 
            "id": "sg:person.0721775233.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721775233.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Radboud University Nijmegen", 
              "id": "https://www.grid.ac/institutes/grid.5590.9", 
              "name": [
                "High Field Magnet Laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zeitler", 
            "givenName": "U.", 
            "id": "sg:person.0621336461.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621336461.89"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.90.196601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014139398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.196601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014139398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.155313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018468646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.155313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018468646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35101552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026631504", 
              "https://doi.org/10.1038/35101552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35101552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026631504", 
              "https://doi.org/10.1038/35101552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.125045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035420341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-44838-9_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039871212", 
              "https://doi.org/10.1007/978-3-540-44838-9_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.115.485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043456385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.115.485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043456385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physe.2007.09.051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049734335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.100818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057648404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.102628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057650205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.121774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057685940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.125786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057689900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.362364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057986913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.39.6227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060549790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.39.6227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060549790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.43.7339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060558021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.43.7339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060558021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.43.7343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060558022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.43.7343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060558022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.45.11419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060560607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.45.11419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060560607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.14983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060573020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.14983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060573020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.54.2696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060791659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.54.2696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060791659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.58.2814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060795217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.58.2814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060795217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.62.2523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060798832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.62.2523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060798832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.66.1926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060802306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.66.1926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060802306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jjap.34.1329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063053482"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-03", 
        "datePublishedReg": "2010-03-01", 
        "description": "The confined electronic states of mesoscopic structures in a magnetic field are arranged in Landau levels consisting of spatially discrete eigenstates. These Landau orbits are the quantum mechanical analogue of classical cyclotron orbits. Here we present magnetoconductance oscillations in semiconductor rings, which visualize the spatial discreteness of the Landau orbits in high magnetic fields (typically B>2 T). We will show that these oscillations are caused by the flux-quantized, discrete electronic size of the ring leading to a corresponding modulation of its two-point conductance. The oscillation period is given by the number of flux quanta penetrating the conducting area of the structure. These high-field oscillations are distinctively different from the well-known Aharonov\u2013Bohm effect1, where, most generally, the penetration of individual flux quanta h/e through a nanostructure causes periodic crossings of field-dependent energy levels, which give rise to magneto-quantum oscillations in its conductance2,3,4.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nphys1517", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1034717", 
            "issn": [
              "1745-2473", 
              "1745-2481"
            ], 
            "name": "Nature Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "Correlation-induced single-flux-quantum penetration in quantum rings", 
        "pagination": "173", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "21f6137a9b3895ef312183a70417fdafe8d6bac0e750d21cb28f3d9e9079f442"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nphys1517"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007129574"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nphys1517", 
          "https://app.dimensions.ai/details/publication/pub.1007129574"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000421.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nphys1517"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys1517'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys1517'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys1517'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys1517'


     

    This table displays all metadata directly associated to this object as RDF triples.

    189 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nphys1517 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N35044653a9814c4587bf18380d5cdf60
    4 schema:citation sg:pub.10.1007/978-3-540-44838-9_10
    5 sg:pub.10.1038/35101552
    6 https://doi.org/10.1016/j.physe.2007.09.051
    7 https://doi.org/10.1063/1.100818
    8 https://doi.org/10.1063/1.102628
    9 https://doi.org/10.1063/1.121774
    10 https://doi.org/10.1063/1.125045
    11 https://doi.org/10.1063/1.125786
    12 https://doi.org/10.1063/1.362364
    13 https://doi.org/10.1103/physrev.115.485
    14 https://doi.org/10.1103/physrevb.39.6227
    15 https://doi.org/10.1103/physrevb.43.7339
    16 https://doi.org/10.1103/physrevb.43.7343
    17 https://doi.org/10.1103/physrevb.45.11419
    18 https://doi.org/10.1103/physrevb.50.14983
    19 https://doi.org/10.1103/physrevb.72.155313
    20 https://doi.org/10.1103/physrevlett.54.2696
    21 https://doi.org/10.1103/physrevlett.58.2814
    22 https://doi.org/10.1103/physrevlett.62.2523
    23 https://doi.org/10.1103/physrevlett.66.1926
    24 https://doi.org/10.1103/physrevlett.90.196601
    25 https://doi.org/10.1143/jjap.34.1329
    26 schema:datePublished 2010-03
    27 schema:datePublishedReg 2010-03-01
    28 schema:description The confined electronic states of mesoscopic structures in a magnetic field are arranged in Landau levels consisting of spatially discrete eigenstates. These Landau orbits are the quantum mechanical analogue of classical cyclotron orbits. Here we present magnetoconductance oscillations in semiconductor rings, which visualize the spatial discreteness of the Landau orbits in high magnetic fields (typically B>2 T). We will show that these oscillations are caused by the flux-quantized, discrete electronic size of the ring leading to a corresponding modulation of its two-point conductance. The oscillation period is given by the number of flux quanta penetrating the conducting area of the structure. These high-field oscillations are distinctively different from the well-known Aharonov–Bohm effect1, where, most generally, the penetration of individual flux quanta h/e through a nanostructure causes periodic crossings of field-dependent energy levels, which give rise to magneto-quantum oscillations in its conductance2,3,4.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf Nceefb0ce793440adb7f00091f4eafa49
    33 Nd23544e026424ac4aebf7e3ea16718d4
    34 sg:journal.1034717
    35 schema:name Correlation-induced single-flux-quantum penetration in quantum rings
    36 schema:pagination 173
    37 schema:productId N34369aff0abf4b9dbd3c623f6a850d66
    38 N60fe9df04829446388505a3e433d7b07
    39 Nb006d584ef134549b00a0b0ffbc7a08e
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007129574
    41 https://doi.org/10.1038/nphys1517
    42 schema:sdDatePublished 2019-04-10T23:11
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher Nd04412df90394daaaa2318c07802b729
    45 schema:url https://www.nature.com/articles/nphys1517
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N2e2f54f96f4e459a829d361f5d561386 rdf:first sg:person.0732052514.94
    50 rdf:rest N95e0195cdc5c4af0af6f60279e93f859
    51 N34369aff0abf4b9dbd3c623f6a850d66 schema:name dimensions_id
    52 schema:value pub.1007129574
    53 rdf:type schema:PropertyValue
    54 N35044653a9814c4587bf18380d5cdf60 rdf:first sg:person.01052317412.42
    55 rdf:rest Ncca6662ea96a4067aaf5ddbd2b994a35
    56 N56c7a576b3cc4c0dbfaef053c6652536 rdf:first sg:person.01372623561.31
    57 rdf:rest N2e2f54f96f4e459a829d361f5d561386
    58 N60fe9df04829446388505a3e433d7b07 schema:name readcube_id
    59 schema:value 21f6137a9b3895ef312183a70417fdafe8d6bac0e750d21cb28f3d9e9079f442
    60 rdf:type schema:PropertyValue
    61 N95e0195cdc5c4af0af6f60279e93f859 rdf:first sg:person.010524013447.10
    62 rdf:rest Nd407005b02d54d54b21d199e39228b1c
    63 Nb006d584ef134549b00a0b0ffbc7a08e schema:name doi
    64 schema:value 10.1038/nphys1517
    65 rdf:type schema:PropertyValue
    66 Ncca6662ea96a4067aaf5ddbd2b994a35 rdf:first sg:person.014370525277.24
    67 rdf:rest N56c7a576b3cc4c0dbfaef053c6652536
    68 Nceefb0ce793440adb7f00091f4eafa49 schema:volumeNumber 6
    69 rdf:type schema:PublicationVolume
    70 Nd04412df90394daaaa2318c07802b729 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 Nd23544e026424ac4aebf7e3ea16718d4 schema:issueNumber 3
    73 rdf:type schema:PublicationIssue
    74 Nd407005b02d54d54b21d199e39228b1c rdf:first sg:person.0606465640.99
    75 rdf:rest Nee5084ed4e584a9eaedf1a5de1b7e49a
    76 Nee5084ed4e584a9eaedf1a5de1b7e49a rdf:first sg:person.0721775233.60
    77 rdf:rest Nf99c0c8b9f6a4975920355e4e9f0f671
    78 Nf99c0c8b9f6a4975920355e4e9f0f671 rdf:first sg:person.0621336461.89
    79 rdf:rest rdf:nil
    80 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Physical Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1034717 schema:issn 1745-2473
    87 1745-2481
    88 schema:name Nature Physics
    89 rdf:type schema:Periodical
    90 sg:person.01052317412.42 schema:affiliation https://www.grid.ac/institutes/grid.5570.7
    91 schema:familyName Wieck
    92 schema:givenName A. D.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052317412.42
    94 rdf:type schema:Person
    95 sg:person.010524013447.10 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
    96 schema:familyName Maan
    97 schema:givenName J. C.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010524013447.10
    99 rdf:type schema:Person
    100 sg:person.01372623561.31 schema:affiliation https://www.grid.ac/institutes/grid.5570.7
    101 schema:familyName Reuter
    102 schema:givenName D.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372623561.31
    104 rdf:type schema:Person
    105 sg:person.014370525277.24 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
    106 schema:familyName Giesbers
    107 schema:givenName A. J. M.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014370525277.24
    109 rdf:type schema:Person
    110 sg:person.0606465640.99 schema:affiliation https://www.grid.ac/institutes/grid.6093.c
    111 schema:familyName Sorba
    112 schema:givenName L.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606465640.99
    114 rdf:type schema:Person
    115 sg:person.0621336461.89 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
    116 schema:familyName Zeitler
    117 schema:givenName U.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621336461.89
    119 rdf:type schema:Person
    120 sg:person.0721775233.60 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
    121 schema:familyName Katsnelson
    122 schema:givenName M. I.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721775233.60
    124 rdf:type schema:Person
    125 sg:person.0732052514.94 schema:affiliation https://www.grid.ac/institutes/grid.419994.8
    126 schema:familyName Biasiol
    127 schema:givenName G.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732052514.94
    129 rdf:type schema:Person
    130 sg:pub.10.1007/978-3-540-44838-9_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039871212
    131 https://doi.org/10.1007/978-3-540-44838-9_10
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/35101552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026631504
    134 https://doi.org/10.1038/35101552
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.physe.2007.09.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049734335
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1063/1.100818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057648404
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1063/1.102628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057650205
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1063/1.121774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057685940
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1063/1.125045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035420341
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1063/1.125786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057689900
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1063/1.362364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057986913
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1103/physrev.115.485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043456385
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1103/physrevb.39.6227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060549790
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1103/physrevb.43.7339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060558021
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1103/physrevb.43.7343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060558022
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1103/physrevb.45.11419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060560607
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1103/physrevb.50.14983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573020
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1103/physrevb.72.155313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018468646
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1103/physrevlett.54.2696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791659
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1103/physrevlett.58.2814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795217
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1103/physrevlett.62.2523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798832
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1103/physrevlett.66.1926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802306
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1103/physrevlett.90.196601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014139398
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1143/jjap.34.1329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063053482
    175 rdf:type schema:CreativeWork
    176 https://www.grid.ac/institutes/grid.419994.8 schema:alternateName AREA Science Park
    177 schema:name Laboratorio Nazionale TASC INFM-CNR, Area Science park, 34012 Trieste, Italy
    178 rdf:type schema:Organization
    179 https://www.grid.ac/institutes/grid.5570.7 schema:alternateName Ruhr University Bochum
    180 schema:name Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätstraße 150, 44780 Bochum, Germany
    181 rdf:type schema:Organization
    182 https://www.grid.ac/institutes/grid.5590.9 schema:alternateName Radboud University Nijmegen
    183 schema:name High Field Magnet Laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
    184 Theory of Condensed Matter, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
    185 rdf:type schema:Organization
    186 https://www.grid.ac/institutes/grid.6093.c schema:alternateName Scuola Normale Superiore di Pisa
    187 schema:name Laboratorio Nazionale TASC INFM-CNR, Area Science park, 34012 Trieste, Italy
    188 NEST INFM-CNR and Scuola Normale Superiore, 56126 Pisa, Italy
    189 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...