High-reflectivity high-resolution X-ray crystal optics with diamonds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-03

AUTHORS

Yuri V. Shvyd’ko, Stanislav Stoupin, Alessandro Cunsolo, Ayman H. Said, Xianrong Huang

ABSTRACT

Owing to the depth to which hard X-rays penetrate into most materials, it is commonly accepted that the only way to realize hard-X-ray mirrors with near 100% reflectance is under conditions of total external reflection at grazing incidence to a surface. At angles away from grazing incidence, substantial reflectance of hard X-rays occurs only as a result of constructive interference of the waves scattered from periodically ordered atomic planes in crystals (Bragg diffraction). Theory predicts that even at normal incidence the reflection of X-rays from diamond under the Bragg condition should approach 100%—substantially higher than from any other crystal. Here we demonstrate that commercially produced synthetic diamond crystals do indeed show an unprecedented reflecting power at normal incidence and millielectronvolt-narrow reflection bandwidths for hard X-rays. Bragg diffraction measurements of reflectivity and the energy bandwidth show remarkable agreement with theory. Such properties are valuable to the development of hard-X-ray optics, and could greatly assist the realization of fully coherent X-ray sources, such as X-ray free-electron laser oscillators1,2,3. More... »

PAGES

196

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys1506

DOI

http://dx.doi.org/10.1038/nphys1506

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034025222


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shvyd\u2019ko", 
        "givenName": "Yuri V.", 
        "id": "sg:person.01342427313.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342427313.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoupin", 
        "givenName": "Stanislav", 
        "id": "sg:person.01274314113.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274314113.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brookhaven National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA", 
            "NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cunsolo", 
        "givenName": "Alessandro", 
        "id": "sg:person.01037142212.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037142212.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Said", 
        "givenName": "Ayman H.", 
        "id": "sg:person.01136467204.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136467204.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brookhaven National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Xianrong", 
        "id": "sg:person.014727357623.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014727357623.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevstab.12.030703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008489055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevstab.12.030703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008489055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/36/364224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015822114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/36/364224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015822114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(84)90009-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030981982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(84)90009-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030981982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-9002(93)91291-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043668667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-9002(93)91291-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043668667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-9635(96)00559-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044214047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9002(97)01014-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045928434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/40/17/043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051176087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.25.971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060530985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.25.971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060530985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.244802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.244802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.085901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.085901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756652"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03", 
    "datePublishedReg": "2010-03-01", 
    "description": "Owing to the depth to which hard X-rays penetrate into most materials, it is commonly accepted that the only way to realize hard-X-ray mirrors with near 100% reflectance is under conditions of total external reflection at grazing incidence to a surface. At angles away from grazing incidence, substantial reflectance of hard X-rays occurs only as a result of constructive interference of the waves scattered from periodically ordered atomic planes in crystals (Bragg diffraction). Theory predicts that even at normal incidence the reflection of X-rays from diamond under the Bragg condition should approach 100%\u2014substantially higher than from any other crystal. Here we demonstrate that commercially produced synthetic diamond crystals do indeed show an unprecedented reflecting power at normal incidence and millielectronvolt-narrow reflection bandwidths for hard X-rays. Bragg diffraction measurements of reflectivity and the energy bandwidth show remarkable agreement with theory. Such properties are valuable to the development of hard-X-ray optics, and could greatly assist the realization of fully coherent X-ray sources, such as X-ray free-electron laser oscillators1,2,3.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys1506", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4111036", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "High-reflectivity high-resolution X-ray crystal optics with diamonds", 
    "pagination": "196", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a21690964b771d9b5f2de37df167540a3156dd14230df8ed1e73b84f57b6e839"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys1506"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034025222"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys1506", 
      "https://app.dimensions.ai/details/publication/pub.1034025222"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89789_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys1506"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys1506'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys1506'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys1506'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys1506'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys1506 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nf7081e7058b1464faf72585f629e6509
4 schema:citation https://doi.org/10.1016/0030-4018(84)90009-9
5 https://doi.org/10.1016/0168-9002(93)91291-t
6 https://doi.org/10.1016/0925-9635(96)00559-6
7 https://doi.org/10.1016/s0168-9002(97)01014-0
8 https://doi.org/10.1088/0022-3727/40/17/043
9 https://doi.org/10.1088/0953-8984/21/36/364224
10 https://doi.org/10.1103/physrevb.25.971
11 https://doi.org/10.1103/physrevlett.100.244802
12 https://doi.org/10.1103/physrevlett.104.085901
13 https://doi.org/10.1103/physrevstab.12.030703
14 schema:datePublished 2010-03
15 schema:datePublishedReg 2010-03-01
16 schema:description Owing to the depth to which hard X-rays penetrate into most materials, it is commonly accepted that the only way to realize hard-X-ray mirrors with near 100% reflectance is under conditions of total external reflection at grazing incidence to a surface. At angles away from grazing incidence, substantial reflectance of hard X-rays occurs only as a result of constructive interference of the waves scattered from periodically ordered atomic planes in crystals (Bragg diffraction). Theory predicts that even at normal incidence the reflection of X-rays from diamond under the Bragg condition should approach 100%—substantially higher than from any other crystal. Here we demonstrate that commercially produced synthetic diamond crystals do indeed show an unprecedented reflecting power at normal incidence and millielectronvolt-narrow reflection bandwidths for hard X-rays. Bragg diffraction measurements of reflectivity and the energy bandwidth show remarkable agreement with theory. Such properties are valuable to the development of hard-X-ray optics, and could greatly assist the realization of fully coherent X-ray sources, such as X-ray free-electron laser oscillators1,2,3.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N6e7c3362ff254b6287528edde2838ee6
21 Nb9771b9773f142458813c715a124adcb
22 sg:journal.1034717
23 schema:name High-reflectivity high-resolution X-ray crystal optics with diamonds
24 schema:pagination 196
25 schema:productId N1e68e9395ebf41dabcfc4062abc38a58
26 N3b092feb9c8147f5bcc496e75aea8765
27 N780358391f4d4a6686bbda9408f23df7
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034025222
29 https://doi.org/10.1038/nphys1506
30 schema:sdDatePublished 2019-04-11T09:51
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Ncc43857f0d074f92b07d15f13e672e2d
33 schema:url https://www.nature.com/articles/nphys1506
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N1e68e9395ebf41dabcfc4062abc38a58 schema:name dimensions_id
38 schema:value pub.1034025222
39 rdf:type schema:PropertyValue
40 N37bea4204ded46b3bf9dde4c15693813 rdf:first sg:person.01037142212.48
41 rdf:rest N5a1a5698e2c7498db720f99138cb4f32
42 N3b092feb9c8147f5bcc496e75aea8765 schema:name doi
43 schema:value 10.1038/nphys1506
44 rdf:type schema:PropertyValue
45 N5a1a5698e2c7498db720f99138cb4f32 rdf:first sg:person.01136467204.48
46 rdf:rest Nce634f2faf594434ad656d9d2e786b23
47 N6e7c3362ff254b6287528edde2838ee6 schema:issueNumber 3
48 rdf:type schema:PublicationIssue
49 N780358391f4d4a6686bbda9408f23df7 schema:name readcube_id
50 schema:value a21690964b771d9b5f2de37df167540a3156dd14230df8ed1e73b84f57b6e839
51 rdf:type schema:PropertyValue
52 Na645f903af4c403781cb0c038e30701a rdf:first sg:person.01274314113.41
53 rdf:rest N37bea4204ded46b3bf9dde4c15693813
54 Nb9771b9773f142458813c715a124adcb schema:volumeNumber 6
55 rdf:type schema:PublicationVolume
56 Ncc43857f0d074f92b07d15f13e672e2d schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nce634f2faf594434ad656d9d2e786b23 rdf:first sg:person.014727357623.91
59 rdf:rest rdf:nil
60 Nf7081e7058b1464faf72585f629e6509 rdf:first sg:person.01342427313.81
61 rdf:rest Na645f903af4c403781cb0c038e30701a
62 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
63 schema:name Physical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
66 schema:name Other Physical Sciences
67 rdf:type schema:DefinedTerm
68 sg:grant.4111036 http://pending.schema.org/fundedItem sg:pub.10.1038/nphys1506
69 rdf:type schema:MonetaryGrant
70 sg:journal.1034717 schema:issn 1745-2473
71 1745-2481
72 schema:name Nature Physics
73 rdf:type schema:Periodical
74 sg:person.01037142212.48 schema:affiliation https://www.grid.ac/institutes/grid.202665.5
75 schema:familyName Cunsolo
76 schema:givenName Alessandro
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037142212.48
78 rdf:type schema:Person
79 sg:person.01136467204.48 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
80 schema:familyName Said
81 schema:givenName Ayman H.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136467204.48
83 rdf:type schema:Person
84 sg:person.01274314113.41 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
85 schema:familyName Stoupin
86 schema:givenName Stanislav
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274314113.41
88 rdf:type schema:Person
89 sg:person.01342427313.81 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
90 schema:familyName Shvyd’ko
91 schema:givenName Yuri V.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342427313.81
93 rdf:type schema:Person
94 sg:person.014727357623.91 schema:affiliation https://www.grid.ac/institutes/grid.202665.5
95 schema:familyName Huang
96 schema:givenName Xianrong
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014727357623.91
98 rdf:type schema:Person
99 https://doi.org/10.1016/0030-4018(84)90009-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030981982
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0168-9002(93)91291-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1043668667
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0925-9635(96)00559-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044214047
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0168-9002(97)01014-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045928434
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1088/0022-3727/40/17/043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051176087
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1088/0953-8984/21/36/364224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015822114
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevb.25.971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060530985
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevlett.100.244802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753624
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevlett.104.085901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756652
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevstab.12.030703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008489055
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.187073.a schema:alternateName Argonne National Laboratory
120 schema:name Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
121 rdf:type schema:Organization
122 https://www.grid.ac/institutes/grid.202665.5 schema:alternateName Brookhaven National Laboratory
123 schema:name Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
124 NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, USA
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...