Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-05-10

AUTHORS

Haijun Zhang, Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang, Shou-Cheng Zhang

ABSTRACT

Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of topologically protected states in two-dimensional and three-dimensional band insulators with large spin–orbit coupling. So far, the only known three-dimensional topological insulator is BixSb1−x, which is an alloy with complex surface states. Here, we present the results of first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Sb2Se3, Bi2Te3 and Bi2Se3. Our calculations predict that Sb2Te3, Bi2Te3 and Bi2Se3 are topological insulators, whereas Sb2Se3 is not. These topological insulators have robust and simple surface states consisting of a single Dirac cone at the Γ point. In addition, we predict that Bi2Se3 has a topologically non-trivial energy gap of 0.3 eV, which is larger than the energy scale of room temperature. We further present a simple and unified continuum model that captures the salient topological features of this class of materials. More... »

PAGES

438-442

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys1270

DOI

http://dx.doi.org/10.1038/nphys1270

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036898094


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Haijun", 
        "id": "sg:person.012343072047.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012343072047.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Advanced Study, Tsinghua University, Beijing 100084, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Center for Advanced Study, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Chao-Xing", 
        "id": "sg:person.016701454541.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016701454541.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, McCullough Building, Stanford University, Stanford, California 94305-4045, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Physics, McCullough Building, Stanford University, Stanford, California 94305-4045, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qi", 
        "givenName": "Xiao-Liang", 
        "id": "sg:person.01101035010.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101035010.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Xi", 
        "id": "sg:person.0776126437.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776126437.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Zhong", 
        "id": "sg:person.0765424440.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765424440.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, McCullough Building, Stanford University, Stanford, California 94305-4045, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Physics, McCullough Building, Stanford University, Stanford, California 94305-4045, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Shou-Cheng", 
        "id": "sg:person.01151454145.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151454145.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045802727", 
          "https://doi.org/10.1038/nature06843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b13586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109718751", 
          "https://doi.org/10.1007/b13586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00551162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022090414", 
          "https://doi.org/10.1007/bf00551162"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-05-10", 
    "datePublishedReg": "2009-05-10", 
    "description": "Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of topologically protected states in two-dimensional and three-dimensional band insulators with large spin\u2013orbit coupling. So far, the only known three-dimensional topological insulator is BixSb1\u2212x, which is an alloy with complex surface states. Here, we present the results of first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Sb2Se3, Bi2Te3 and Bi2Se3. Our calculations predict that Sb2Te3, Bi2Te3 and Bi2Se3 are topological insulators, whereas Sb2Se3 is not. These topological insulators have robust and simple surface states consisting of a single Dirac cone at the \u0393 point. In addition, we predict that Bi2Se3 has a topologically non-trivial energy gap of 0.3\u2009eV, which is larger than the energy scale of room temperature. We further present a simple and unified continuum model that captures the salient topological features of this class of materials.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nphys1270", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "single Dirac cone", 
      "topological insulators", 
      "surface states", 
      "Dirac cones", 
      "three-dimensional topological insulators", 
      "large spin-orbit coupling", 
      "bulk insulating gap", 
      "quantum Hall systems", 
      "spin-orbit coupling", 
      "time-reversal symmetry", 
      "first-principles electronic structure calculations", 
      "electronic structure calculations", 
      "quantum matter", 
      "Hall systems", 
      "edge states", 
      "band insulator", 
      "energy scale", 
      "insulating gap", 
      "energy gap", 
      "structure calculations", 
      "Bi2Se3", 
      "insulator", 
      "such states", 
      "class of materials", 
      "Sb2Te3", 
      "Bi2Te3", 
      "room temperature", 
      "new state", 
      "Sb2Se3", 
      "calculations", 
      "continuum model", 
      "eV", 
      "topological features", 
      "state", 
      "such analogies", 
      "salient topological features", 
      "gap", 
      "symmetry", 
      "coupling", 
      "cone", 
      "such systems", 
      "matter", 
      "temperature", 
      "surface", 
      "analogy", 
      "alloy", 
      "system", 
      "materials", 
      "scale", 
      "discovery", 
      "features", 
      "model", 
      "results", 
      "point", 
      "addition", 
      "robustness", 
      "class", 
      "study", 
      "three-dimensional band insulators", 
      "complex surface states", 
      "stoichiometric crystals Sb2Te3", 
      "crystals Sb2Te3", 
      "simple surface states", 
      "non-trivial energy gap", 
      "unified continuum model"
    ], 
    "name": "Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface", 
    "pagination": "438-442", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036898094"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys1270"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys1270", 
      "https://app.dimensions.ai/details/publication/pub.1036898094"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nphys1270"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys1270'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys1270'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys1270'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys1270'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      22 PREDICATES      93 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys1270 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N49615222bdce4e11a7c222940499e721
4 schema:citation sg:pub.10.1007/b13586
5 sg:pub.10.1007/bf00551162
6 sg:pub.10.1038/nature06843
7 schema:datePublished 2009-05-10
8 schema:datePublishedReg 2009-05-10
9 schema:description Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of topologically protected states in two-dimensional and three-dimensional band insulators with large spin–orbit coupling. So far, the only known three-dimensional topological insulator is BixSb1−x, which is an alloy with complex surface states. Here, we present the results of first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Sb2Se3, Bi2Te3 and Bi2Se3. Our calculations predict that Sb2Te3, Bi2Te3 and Bi2Se3 are topological insulators, whereas Sb2Se3 is not. These topological insulators have robust and simple surface states consisting of a single Dirac cone at the Γ point. In addition, we predict that Bi2Se3 has a topologically non-trivial energy gap of 0.3 eV, which is larger than the energy scale of room temperature. We further present a simple and unified continuum model that captures the salient topological features of this class of materials.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N873c4beb520240a8949c700ec3e77b29
14 Nd16456db2ac443cda7c02a2f1c2a6b7f
15 sg:journal.1034717
16 schema:keywords Bi2Se3
17 Bi2Te3
18 Dirac cones
19 Hall systems
20 Sb2Se3
21 Sb2Te3
22 addition
23 alloy
24 analogy
25 band insulator
26 bulk insulating gap
27 calculations
28 class
29 class of materials
30 complex surface states
31 cone
32 continuum model
33 coupling
34 crystals Sb2Te3
35 discovery
36 eV
37 edge states
38 electronic structure calculations
39 energy gap
40 energy scale
41 features
42 first-principles electronic structure calculations
43 gap
44 insulating gap
45 insulator
46 large spin-orbit coupling
47 materials
48 matter
49 model
50 new state
51 non-trivial energy gap
52 point
53 quantum Hall systems
54 quantum matter
55 results
56 robustness
57 room temperature
58 salient topological features
59 scale
60 simple surface states
61 single Dirac cone
62 spin-orbit coupling
63 state
64 stoichiometric crystals Sb2Te3
65 structure calculations
66 study
67 such analogies
68 such states
69 such systems
70 surface
71 surface states
72 symmetry
73 system
74 temperature
75 three-dimensional band insulators
76 three-dimensional topological insulators
77 time-reversal symmetry
78 topological features
79 topological insulators
80 unified continuum model
81 schema:name Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface
82 schema:pagination 438-442
83 schema:productId Nc683ad70162e428a97d672f94749d15a
84 Neb22716c562f4a549d2966236cdf3af4
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036898094
86 https://doi.org/10.1038/nphys1270
87 schema:sdDatePublished 2022-01-01T18:21
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nb860d90b2a4c4f169f12f4ab03d23d17
90 schema:url https://doi.org/10.1038/nphys1270
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N0c8d5ed6034c4b86b5b927abc4fb3f71 rdf:first sg:person.0765424440.27
95 rdf:rest N1fd86789bd8c4ca69edf2b5c8eb44337
96 N1674fbe1ba1e487e82a2d8f91f825dae rdf:first sg:person.01101035010.11
97 rdf:rest N299ccc15e00443958dbfa3360eb344d8
98 N1fd86789bd8c4ca69edf2b5c8eb44337 rdf:first sg:person.01151454145.13
99 rdf:rest rdf:nil
100 N299ccc15e00443958dbfa3360eb344d8 rdf:first sg:person.0776126437.57
101 rdf:rest N0c8d5ed6034c4b86b5b927abc4fb3f71
102 N49615222bdce4e11a7c222940499e721 rdf:first sg:person.012343072047.69
103 rdf:rest Nee6d9fde61a54bcbb061fe62df939495
104 N873c4beb520240a8949c700ec3e77b29 schema:issueNumber 6
105 rdf:type schema:PublicationIssue
106 Nb860d90b2a4c4f169f12f4ab03d23d17 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nc683ad70162e428a97d672f94749d15a schema:name dimensions_id
109 schema:value pub.1036898094
110 rdf:type schema:PropertyValue
111 Nd16456db2ac443cda7c02a2f1c2a6b7f schema:volumeNumber 5
112 rdf:type schema:PublicationVolume
113 Neb22716c562f4a549d2966236cdf3af4 schema:name doi
114 schema:value 10.1038/nphys1270
115 rdf:type schema:PropertyValue
116 Nee6d9fde61a54bcbb061fe62df939495 rdf:first sg:person.016701454541.72
117 rdf:rest N1674fbe1ba1e487e82a2d8f91f825dae
118 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
119 schema:name Mathematical Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
122 schema:name Physical Sciences
123 rdf:type schema:DefinedTerm
124 sg:journal.1034717 schema:issn 1745-2473
125 1745-2481
126 schema:name Nature Physics
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.01101035010.11 schema:affiliation grid-institutes:grid.168010.e
130 schema:familyName Qi
131 schema:givenName Xiao-Liang
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101035010.11
133 rdf:type schema:Person
134 sg:person.01151454145.13 schema:affiliation grid-institutes:grid.168010.e
135 schema:familyName Zhang
136 schema:givenName Shou-Cheng
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151454145.13
138 rdf:type schema:Person
139 sg:person.012343072047.69 schema:affiliation grid-institutes:grid.458438.6
140 schema:familyName Zhang
141 schema:givenName Haijun
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012343072047.69
143 rdf:type schema:Person
144 sg:person.016701454541.72 schema:affiliation grid-institutes:grid.12527.33
145 schema:familyName Liu
146 schema:givenName Chao-Xing
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016701454541.72
148 rdf:type schema:Person
149 sg:person.0765424440.27 schema:affiliation grid-institutes:grid.458438.6
150 schema:familyName Fang
151 schema:givenName Zhong
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765424440.27
153 rdf:type schema:Person
154 sg:person.0776126437.57 schema:affiliation grid-institutes:grid.458438.6
155 schema:familyName Dai
156 schema:givenName Xi
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776126437.57
158 rdf:type schema:Person
159 sg:pub.10.1007/b13586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109718751
160 https://doi.org/10.1007/b13586
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/bf00551162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022090414
163 https://doi.org/10.1007/bf00551162
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nature06843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045802727
166 https://doi.org/10.1038/nature06843
167 rdf:type schema:CreativeWork
168 grid-institutes:grid.12527.33 schema:alternateName Center for Advanced Study, Tsinghua University, Beijing 100084, China
169 schema:name Center for Advanced Study, Tsinghua University, Beijing 100084, China
170 rdf:type schema:Organization
171 grid-institutes:grid.168010.e schema:alternateName Department of Physics, McCullough Building, Stanford University, Stanford, California 94305-4045, USA
172 schema:name Department of Physics, McCullough Building, Stanford University, Stanford, California 94305-4045, USA
173 rdf:type schema:Organization
174 grid-institutes:grid.458438.6 schema:alternateName Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
175 schema:name Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...