The quantum-optical Josephson interferometer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-04

AUTHORS

Dario Gerace, Hakan E. Türeci, Atac Imamoglu, Vittorio Giovannetti, Rosario Fazio

ABSTRACT

The photon-blockade effect, where nonlinearities at the single-photon level alter the quantum statistics of light emitted from a cavity1, has been observed in cavity quantum electrodynamics experiments with atomic2,3 and solid-state systems4,5,6,7,8. Motivated by the success of single-cavity quantum electrodynamics experiments, the focus has recently shifted to the exploration of the rich physics promised by strongly correlated quantum-optical systems in multicavity and extended photonic media9,10,11,12,13,14. Even though most cavity quantum electrodynamics structures are inherently dissipative, most of the early work on strongly correlated photonic systems has assumed cavity structures where losses are essentially negligible. Here we investigate a dissipative quantum-optical system that consists of two coherently driven linear optical cavities connected through a central cavity with a single-photon nonlinearity (an optical analogue of the Josephson interferometer). The interplay of tunnelling and interactions is analysed in the steady state of the system, when a dynamical equilibrium between driving and losses is established. Strong photonic correlations can be identified through the suppression of Josephson-like oscillations of the light emitted from the central cavity as the nonlinearity is increased. In the limit of a single nonlinear cavity coupled to two linear waveguides, we show that photon-correlation measurements would provide a unique probe of the crossover to the strongly correlated regime. More... »

PAGES

281

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys1223

DOI

http://dx.doi.org/10.1038/nphys1223

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013607639


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pavia", 
          "id": "https://www.grid.ac/institutes/grid.8982.b", 
          "name": [
            "Institute of Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland", 
            "CNISM and Dipartimento di Fisica \u2018A. Volta\u2019, Universit\u00e0 di Pavia, 27100 Pavia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerace", 
        "givenName": "Dario", 
        "id": "sg:person.01200417554.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200417554.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute of Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00fcreci", 
        "givenName": "Hakan E.", 
        "id": "sg:person.012275226055.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012275226055.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute of Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imamoglu", 
        "givenName": "Atac", 
        "id": "sg:person.01312720324.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312720324.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NEST CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giovannetti", 
        "givenName": "Vittorio", 
        "id": "sg:person.0751566121.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International School for Advanced Studies", 
          "id": "https://www.grid.ac/institutes/grid.5970.b", 
          "name": [
            "NEST CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy", 
            "International School for Advanced Studies (SISSA), via Beirut 2\u20134, 34014 Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fazio", 
        "givenName": "Rosario", 
        "id": "sg:person.01130476053.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130476053.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001948009", 
          "https://doi.org/10.1038/nature06274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007041825", 
          "https://doi.org/10.1038/nphys466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007041825", 
          "https://doi.org/10.1038/nphys466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008763149", 
          "https://doi.org/10.1038/nphys940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008909605", 
          "https://doi.org/10.1038/nature03804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008909605", 
          "https://doi.org/10.1038/nature03804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008909605", 
          "https://doi.org/10.1038/nature03804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.61.011801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011749689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.61.011801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011749689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012216130", 
          "https://doi.org/10.1038/nphys1073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.16.016255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013887511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/371594a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014393154", 
          "https://doi.org/10.1038/371594a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018558789", 
          "https://doi.org/10.1038/nature05586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020929007", 
          "https://doi.org/10.1038/nphys1078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.031805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022467456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.031805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022467456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023745423", 
          "https://doi.org/10.1038/nature05461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023745423", 
          "https://doi.org/10.1038/nature05461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027186537", 
          "https://doi.org/10.1038/nphys1074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.100501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033653706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.100501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033653706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039222036", 
          "https://doi.org/10.1038/nphys462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039222036", 
          "https://doi.org/10.1038/nphys462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.193306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040263870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.193306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040263870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.153003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051365914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.153003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051365914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052053380", 
          "https://doi.org/10.1038/nphys1154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.032111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060498978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.032111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060498978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.2940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.2940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1963.1664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061435768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.33.001908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065226309"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-04", 
    "datePublishedReg": "2009-04-01", 
    "description": "The photon-blockade effect, where nonlinearities at the single-photon level alter the quantum statistics of light emitted from a cavity1, has been observed in cavity quantum electrodynamics experiments with atomic2,3 and solid-state systems4,5,6,7,8. Motivated by the success of single-cavity quantum electrodynamics experiments, the focus has recently shifted to the exploration of the rich physics promised by strongly correlated quantum-optical systems in multicavity and extended photonic media9,10,11,12,13,14. Even though most cavity quantum electrodynamics structures are inherently dissipative, most of the early work on strongly correlated photonic systems has assumed cavity structures where losses are essentially negligible. Here we investigate a dissipative quantum-optical system that consists of two coherently driven linear optical cavities connected through a central cavity with a single-photon nonlinearity (an optical analogue of the Josephson interferometer). The interplay of tunnelling and interactions is analysed in the steady state of the system, when a dynamical equilibrium between driving and losses is established. Strong photonic correlations can be identified through the suppression of Josephson-like oscillations of the light emitted from the central cavity as the nonlinearity is increased. In the limit of a single nonlinear cavity coupled to two linear waveguides, we show that photon-correlation measurements would provide a unique probe of the crossover to the strongly correlated regime.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys1223", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "The quantum-optical Josephson interferometer", 
    "pagination": "281", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "40d2dd0d2952aa5453f1704b2cf351a7ceaa1ec22fb94a0ce542c52ec458960d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys1223"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013607639"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys1223", 
      "https://app.dimensions.ai/details/publication/pub.1013607639"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys1223"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys1223'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys1223'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys1223'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys1223'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys1223 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N5d4f283a4c264b65ae076a2140bfca8c
4 schema:citation sg:pub.10.1038/371594a0
5 sg:pub.10.1038/nature03804
6 sg:pub.10.1038/nature05461
7 sg:pub.10.1038/nature05586
8 sg:pub.10.1038/nature06274
9 sg:pub.10.1038/nphys1073
10 sg:pub.10.1038/nphys1074
11 sg:pub.10.1038/nphys1078
12 sg:pub.10.1038/nphys1154
13 sg:pub.10.1038/nphys462
14 sg:pub.10.1038/nphys466
15 sg:pub.10.1038/nphys940
16 https://doi.org/10.1103/physreva.61.011801
17 https://doi.org/10.1103/physreva.67.032111
18 https://doi.org/10.1103/physreva.76.031805
19 https://doi.org/10.1103/physrevb.73.193306
20 https://doi.org/10.1103/physrevlett.101.100501
21 https://doi.org/10.1103/physrevlett.63.326
22 https://doi.org/10.1103/physrevlett.70.2940
23 https://doi.org/10.1103/physrevlett.98.153003
24 https://doi.org/10.1109/proc.1963.1664
25 https://doi.org/10.1364/oe.16.016255
26 https://doi.org/10.1364/ol.33.001908
27 schema:datePublished 2009-04
28 schema:datePublishedReg 2009-04-01
29 schema:description The photon-blockade effect, where nonlinearities at the single-photon level alter the quantum statistics of light emitted from a cavity1, has been observed in cavity quantum electrodynamics experiments with atomic2,3 and solid-state systems4,5,6,7,8. Motivated by the success of single-cavity quantum electrodynamics experiments, the focus has recently shifted to the exploration of the rich physics promised by strongly correlated quantum-optical systems in multicavity and extended photonic media9,10,11,12,13,14. Even though most cavity quantum electrodynamics structures are inherently dissipative, most of the early work on strongly correlated photonic systems has assumed cavity structures where losses are essentially negligible. Here we investigate a dissipative quantum-optical system that consists of two coherently driven linear optical cavities connected through a central cavity with a single-photon nonlinearity (an optical analogue of the Josephson interferometer). The interplay of tunnelling and interactions is analysed in the steady state of the system, when a dynamical equilibrium between driving and losses is established. Strong photonic correlations can be identified through the suppression of Josephson-like oscillations of the light emitted from the central cavity as the nonlinearity is increased. In the limit of a single nonlinear cavity coupled to two linear waveguides, we show that photon-correlation measurements would provide a unique probe of the crossover to the strongly correlated regime.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf Ne6a006f20a254ebb8980e8fb3264f05a
34 Nfb53d0d96aff4aff9ed18691bc6157c6
35 sg:journal.1034717
36 schema:name The quantum-optical Josephson interferometer
37 schema:pagination 281
38 schema:productId Nc0c42a2822f442d585dbf5efb59f78f3
39 Nd768af41f3eb4f1eb0c79fc6787dacd1
40 Nf4237ea2589b4b3b87d1311ce92da7ef
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013607639
42 https://doi.org/10.1038/nphys1223
43 schema:sdDatePublished 2019-04-10T13:55
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N0f9a260ab374411a89c2b7e791b6b150
46 schema:url https://www.nature.com/articles/nphys1223
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0efa55dc22314c1b82d8ba04cf14c600 schema:name NEST CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
51 rdf:type schema:Organization
52 N0f9a260ab374411a89c2b7e791b6b150 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N33f729e9f03a44029e171d4849df7a7b rdf:first sg:person.0751566121.99
55 rdf:rest Nf44c5731981e48cfb165fc497aaffd37
56 N5d4f283a4c264b65ae076a2140bfca8c rdf:first sg:person.01200417554.24
57 rdf:rest N9877e854db244c72b24822c5ae86b324
58 N9877e854db244c72b24822c5ae86b324 rdf:first sg:person.012275226055.79
59 rdf:rest Nbe930163d25444cc8f0ce2319b1e6fe7
60 Nbe930163d25444cc8f0ce2319b1e6fe7 rdf:first sg:person.01312720324.60
61 rdf:rest N33f729e9f03a44029e171d4849df7a7b
62 Nc0c42a2822f442d585dbf5efb59f78f3 schema:name dimensions_id
63 schema:value pub.1013607639
64 rdf:type schema:PropertyValue
65 Nd768af41f3eb4f1eb0c79fc6787dacd1 schema:name readcube_id
66 schema:value 40d2dd0d2952aa5453f1704b2cf351a7ceaa1ec22fb94a0ce542c52ec458960d
67 rdf:type schema:PropertyValue
68 Ne6a006f20a254ebb8980e8fb3264f05a schema:volumeNumber 5
69 rdf:type schema:PublicationVolume
70 Nf4237ea2589b4b3b87d1311ce92da7ef schema:name doi
71 schema:value 10.1038/nphys1223
72 rdf:type schema:PropertyValue
73 Nf44c5731981e48cfb165fc497aaffd37 rdf:first sg:person.01130476053.22
74 rdf:rest rdf:nil
75 Nfb53d0d96aff4aff9ed18691bc6157c6 schema:issueNumber 4
76 rdf:type schema:PublicationIssue
77 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
78 schema:name Physical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
81 schema:name Optical Physics
82 rdf:type schema:DefinedTerm
83 sg:journal.1034717 schema:issn 1745-2473
84 1745-2481
85 schema:name Nature Physics
86 rdf:type schema:Periodical
87 sg:person.01130476053.22 schema:affiliation https://www.grid.ac/institutes/grid.5970.b
88 schema:familyName Fazio
89 schema:givenName Rosario
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130476053.22
91 rdf:type schema:Person
92 sg:person.01200417554.24 schema:affiliation https://www.grid.ac/institutes/grid.8982.b
93 schema:familyName Gerace
94 schema:givenName Dario
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200417554.24
96 rdf:type schema:Person
97 sg:person.012275226055.79 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
98 schema:familyName Türeci
99 schema:givenName Hakan E.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012275226055.79
101 rdf:type schema:Person
102 sg:person.01312720324.60 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
103 schema:familyName Imamoglu
104 schema:givenName Atac
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312720324.60
106 rdf:type schema:Person
107 sg:person.0751566121.99 schema:affiliation N0efa55dc22314c1b82d8ba04cf14c600
108 schema:familyName Giovannetti
109 schema:givenName Vittorio
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99
111 rdf:type schema:Person
112 sg:pub.10.1038/371594a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014393154
113 https://doi.org/10.1038/371594a0
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nature03804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008909605
116 https://doi.org/10.1038/nature03804
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nature05461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023745423
119 https://doi.org/10.1038/nature05461
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature05586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018558789
122 https://doi.org/10.1038/nature05586
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nature06274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001948009
125 https://doi.org/10.1038/nature06274
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nphys1073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012216130
128 https://doi.org/10.1038/nphys1073
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nphys1074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027186537
131 https://doi.org/10.1038/nphys1074
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nphys1078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020929007
134 https://doi.org/10.1038/nphys1078
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nphys1154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052053380
137 https://doi.org/10.1038/nphys1154
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nphys462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039222036
140 https://doi.org/10.1038/nphys462
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nphys466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007041825
143 https://doi.org/10.1038/nphys466
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nphys940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008763149
146 https://doi.org/10.1038/nphys940
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physreva.61.011801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011749689
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreva.67.032111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060498978
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physreva.76.031805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022467456
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevb.73.193306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040263870
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.101.100501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033653706
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.63.326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799893
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.70.2940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806845
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.98.153003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051365914
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/proc.1963.1664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061435768
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1364/oe.16.016255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013887511
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1364/ol.33.001908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065226309
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
171 schema:name Institute of Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.5970.b schema:alternateName International School for Advanced Studies
174 schema:name International School for Advanced Studies (SISSA), via Beirut 2–4, 34014 Trieste, Italy
175 NEST CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.8982.b schema:alternateName University of Pavia
178 schema:name CNISM and Dipartimento di Fisica ‘A. Volta’, Università di Pavia, 27100 Pavia, Italy
179 Institute of Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...