Simulating a quantum magnet with trapped ions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-10

AUTHORS

A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, T. Schaetz

ABSTRACT

To gain deeper insight into the dynamics of complex quantum systems we need a quantum leap in computer simulations. We cannot translate quantum behaviour arising from superposition states or entanglement efficiently into the classical language of conventional computers. The solution to this problem, proposed in 1982 (ref. 1), is simulating the quantum behaviour of interest in a different quantum system where the interactions can be controlled and the outcome detected sufficiently well. Here we study the building blocks for simulating quantum spin Hamiltonians with trapped ions2. We experimentally simulate the adiabatic evolution of the smallest non-trivial spin system from paramagnetic into ferromagnetic order with a quantum magnetization for two spins of 98%. We prove that the transition is not driven by thermal fluctuations but is of quantum-mechanical origin (analogous to quantum fluctuations in quantum phase transitions3). We observe a final superposition state of the two degenerate spin configurations for the ferromagnetic order (|↑↑〉+|↓↓〉), corresponding to deterministic entanglement achieved with 88% fidelity. This method should allow for scaling to a higher number of coupled spins2, enabling implementation of simulations that are intractable on conventional computers. More... »

PAGES

757

Journal

TITLE

Nature Physics

ISSUE

10

VOLUME

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys1032

DOI

http://dx.doi.org/10.1038/nphys1032

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016542767


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Friedenauer", 
        "givenName": "A.", 
        "id": "sg:person.016333205223.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016333205223.36"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Schmitz", 
        "givenName": "H.", 
        "id": "sg:person.01244513402.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244513402.81"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Glueckert", 
        "givenName": "J. T.", 
        "id": "sg:person.0635335702.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635335702.11"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Porras", 
        "givenName": "D.", 
        "id": "sg:person.01125206603.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125206603.33"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Schaetz", 
        "givenName": "T.", 
        "id": "sg:person.0737330544.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737330544.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/09500340701639631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000071799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013090783", 
          "https://doi.org/10.1038/nature04251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013090783", 
          "https://doi.org/10.1038/nature04251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013090783", 
          "https://doi.org/10.1038/nature04251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.263602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014172735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.263602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014172735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35005011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019244542", 
          "https://doi.org/10.1038/35005011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35005011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019244542", 
          "https://doi.org/10.1038/35005011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020946091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020946091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2003.1205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028189283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.022324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037887336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.022324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037887336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.207901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037986534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.207901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037986534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02650179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038336282", 
          "https://doi.org/10.1007/bf02650179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038397887", 
          "https://doi.org/10.1038/nphys961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043328327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043328327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.250501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045625754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.250501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045625754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047225147", 
          "https://doi.org/10.1038/nature01492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047225147", 
          "https://doi.org/10.1038/nature01492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051606135", 
          "https://doi.org/10.1038/nature04279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051606135", 
          "https://doi.org/10.1038/nature04279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051606135", 
          "https://doi.org/10.1038/nature04279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415039a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052648436", 
          "https://doi.org/10.1038/415039a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415039a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052648436", 
          "https://doi.org/10.1038/415039a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5465.475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053374845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.1463744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062232495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5278.1073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062553940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5465.468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062569222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6028/jres.103.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073601156"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-10", 
    "datePublishedReg": "2008-10-01", 
    "description": "To gain deeper insight into the dynamics of complex quantum systems we need a quantum leap in computer simulations. We cannot translate quantum behaviour arising from superposition states or entanglement efficiently into the classical language of conventional computers. The solution to this problem, proposed in 1982 (ref. 1), is simulating the quantum behaviour of interest in a different quantum system where the interactions can be controlled and the outcome detected sufficiently well. Here we study the building blocks for simulating quantum spin Hamiltonians with trapped ions2. We experimentally simulate the adiabatic evolution of the smallest non-trivial spin system from paramagnetic into ferromagnetic order with a quantum magnetization for two spins of 98%. We prove that the transition is not driven by thermal fluctuations but is of quantum-mechanical origin (analogous to quantum fluctuations in quantum phase transitions3). We observe a final superposition state of the two degenerate spin configurations for the ferromagnetic order (|\u2191\u2191\u3009+|\u2193\u2193\u3009), corresponding to deterministic entanglement achieved with 88% fidelity. This method should allow for scaling to a higher number of coupled spins2, enabling implementation of simulations that are intractable on conventional computers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphys1032", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Simulating a quantum magnet with trapped\u00a0ions", 
    "pagination": "757", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4ed24619b3adc51d566a55d8d6f233c30e57a16faa458be811956f9e2ce78114"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys1032"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016542767"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys1032", 
      "https://app.dimensions.ai/details/publication/pub.1016542767"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000584.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphys1032"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys1032'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys1032'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys1032'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys1032'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys1032 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nd64484fff434421b857de292366c9d54
4 schema:citation sg:pub.10.1007/bf02650179
5 sg:pub.10.1038/35005011
6 sg:pub.10.1038/415039a
7 sg:pub.10.1038/nature01492
8 sg:pub.10.1038/nature04251
9 sg:pub.10.1038/nature04279
10 sg:pub.10.1038/nphys961
11 https://doi.org/10.1080/09500340701639631
12 https://doi.org/10.1098/rsta.2003.1205
13 https://doi.org/10.1103/physreva.77.022324
14 https://doi.org/10.1103/physrevlett.81.1525
15 https://doi.org/10.1103/physrevlett.86.3907
16 https://doi.org/10.1103/physrevlett.92.207901
17 https://doi.org/10.1103/physrevlett.93.263602
18 https://doi.org/10.1103/physrevlett.96.250501
19 https://doi.org/10.1119/1.1463744
20 https://doi.org/10.1126/science.273.5278.1073
21 https://doi.org/10.1126/science.288.5465.468
22 https://doi.org/10.1126/science.288.5465.475
23 https://doi.org/10.6028/jres.103.019
24 schema:datePublished 2008-10
25 schema:datePublishedReg 2008-10-01
26 schema:description To gain deeper insight into the dynamics of complex quantum systems we need a quantum leap in computer simulations. We cannot translate quantum behaviour arising from superposition states or entanglement efficiently into the classical language of conventional computers. The solution to this problem, proposed in 1982 (ref. 1), is simulating the quantum behaviour of interest in a different quantum system where the interactions can be controlled and the outcome detected sufficiently well. Here we study the building blocks for simulating quantum spin Hamiltonians with trapped ions2. We experimentally simulate the adiabatic evolution of the smallest non-trivial spin system from paramagnetic into ferromagnetic order with a quantum magnetization for two spins of 98%. We prove that the transition is not driven by thermal fluctuations but is of quantum-mechanical origin (analogous to quantum fluctuations in quantum phase transitions3). We observe a final superposition state of the two degenerate spin configurations for the ferromagnetic order (|↑↑〉+|↓↓〉), corresponding to deterministic entanglement achieved with 88% fidelity. This method should allow for scaling to a higher number of coupled spins2, enabling implementation of simulations that are intractable on conventional computers.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N4a7311daf5484b7b84d281f821b3486c
31 N7302febaa4904c4e98b82102d2f48b78
32 sg:journal.1034717
33 schema:name Simulating a quantum magnet with trapped ions
34 schema:pagination 757
35 schema:productId N6fe82e25e75d42979262f6b570944551
36 N8505c1c7c66547b68340577f38a9995f
37 Ne72219912d3742a4bcff3813109931e5
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016542767
39 https://doi.org/10.1038/nphys1032
40 schema:sdDatePublished 2019-04-10T15:12
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nf7b29e63bc6c41b29d15a0ca275774a9
43 schema:url https://www.nature.com/articles/nphys1032
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N30b8f4b3866e4565a8e3ed2ddc7e9643 rdf:first sg:person.01244513402.81
48 rdf:rest N4412f38b774949b499dca64c763cb28c
49 N4412f38b774949b499dca64c763cb28c rdf:first sg:person.0635335702.11
50 rdf:rest N523ea767b45548218ab8daa33243e070
51 N4a7311daf5484b7b84d281f821b3486c schema:volumeNumber 4
52 rdf:type schema:PublicationVolume
53 N523ea767b45548218ab8daa33243e070 rdf:first sg:person.01125206603.33
54 rdf:rest Ne1b82256f3a745b5816fe1726f4b2216
55 N6fe82e25e75d42979262f6b570944551 schema:name doi
56 schema:value 10.1038/nphys1032
57 rdf:type schema:PropertyValue
58 N7302febaa4904c4e98b82102d2f48b78 schema:issueNumber 10
59 rdf:type schema:PublicationIssue
60 N8505c1c7c66547b68340577f38a9995f schema:name readcube_id
61 schema:value 4ed24619b3adc51d566a55d8d6f233c30e57a16faa458be811956f9e2ce78114
62 rdf:type schema:PropertyValue
63 Nd64484fff434421b857de292366c9d54 rdf:first sg:person.016333205223.36
64 rdf:rest N30b8f4b3866e4565a8e3ed2ddc7e9643
65 Ne1b82256f3a745b5816fe1726f4b2216 rdf:first sg:person.0737330544.09
66 rdf:rest rdf:nil
67 Ne72219912d3742a4bcff3813109931e5 schema:name dimensions_id
68 schema:value pub.1016542767
69 rdf:type schema:PropertyValue
70 Nf7b29e63bc6c41b29d15a0ca275774a9 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
73 schema:name Physical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
76 schema:name Quantum Physics
77 rdf:type schema:DefinedTerm
78 sg:journal.1034717 schema:issn 1745-2473
79 1745-2481
80 schema:name Nature Physics
81 rdf:type schema:Periodical
82 sg:person.01125206603.33 schema:familyName Porras
83 schema:givenName D.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125206603.33
85 rdf:type schema:Person
86 sg:person.01244513402.81 schema:familyName Schmitz
87 schema:givenName H.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244513402.81
89 rdf:type schema:Person
90 sg:person.016333205223.36 schema:familyName Friedenauer
91 schema:givenName A.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016333205223.36
93 rdf:type schema:Person
94 sg:person.0635335702.11 schema:familyName Glueckert
95 schema:givenName J. T.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635335702.11
97 rdf:type schema:Person
98 sg:person.0737330544.09 schema:familyName Schaetz
99 schema:givenName T.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737330544.09
101 rdf:type schema:Person
102 sg:pub.10.1007/bf02650179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038336282
103 https://doi.org/10.1007/bf02650179
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/35005011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019244542
106 https://doi.org/10.1038/35005011
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/415039a schema:sameAs https://app.dimensions.ai/details/publication/pub.1052648436
109 https://doi.org/10.1038/415039a
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nature01492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047225147
112 https://doi.org/10.1038/nature01492
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nature04251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013090783
115 https://doi.org/10.1038/nature04251
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nature04279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051606135
118 https://doi.org/10.1038/nature04279
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nphys961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038397887
121 https://doi.org/10.1038/nphys961
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1080/09500340701639631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000071799
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1098/rsta.2003.1205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028189283
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreva.77.022324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037887336
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.81.1525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043328327
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.86.3907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020946091
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.92.207901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037986534
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.93.263602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014172735
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.96.250501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045625754
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1119/1.1463744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062232495
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1126/science.273.5278.1073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553940
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1126/science.288.5465.468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062569222
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1126/science.288.5465.475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053374845
146 rdf:type schema:CreativeWork
147 https://doi.org/10.6028/jres.103.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073601156
148 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...