Continuous-variable quantum cryptography using two-way quantum communication View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-07-11

AUTHORS

Stefano Pirandola, Stefano Mancini, Seth Lloyd, Samuel L. Braunstein

ABSTRACT

Quantum cryptography has recently been extended to continuous-variable systems, such as the bosonic modes of the electromagnetic field possessing continuous degrees of freedom. In particular, several cryptographic protocols have been proposed and experimentally implemented using bosonic modes with Gaussian statistics. These protocols have shown the possibility of reaching very high secret key rates, even in the presence of strong losses in the quantum communication channel. Despite this robustness to loss, their security can be affected by more general attacks where extra Gaussian noise is introduced by the eavesdropper. Here, we show a ‘hardware solution’ for enhancing the security thresholds of these protocols. This is possible by extending them to two-way quantum communication where subsequent uses of the quantum channel are suitably combined. In the resulting two-way schemes, one of the honest parties assists the secret encoding of the other, with the chance of a non-trivial superadditive enhancement of the security thresholds. These results should enable the extension of quantum cryptography to more complex quantum communications. More... »

PAGES

726-730

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphys1018

DOI

http://dx.doi.org/10.1038/nphys1018

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048039070


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pirandola", 
        "givenName": "Stefano", 
        "id": "sg:person.0735101567.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735101567.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Fisica & CNISM, Universit\u00e0 di Camerino, Camerino 62032, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5602.1", 
          "name": [
            "Dipartimento di Fisica & CNISM, Universit\u00e0 di Camerino, Camerino 62032, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mancini", 
        "givenName": "Stefano", 
        "id": "sg:person.01221167131.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221167131.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA", 
            "Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lloyd", 
        "givenName": "Seth", 
        "id": "sg:person.01073441277.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073441277.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of York, York YO10 5DD, UK", 
          "id": "http://www.grid.ac/institutes/grid.5685.e", 
          "name": [
            "Department of Computer Science, University of York, York YO10 5DD, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braunstein", 
        "givenName": "Samuel L.", 
        "id": "sg:person.0666766367.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-015-1258-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049787368", 
          "https://doi.org/10.1007/978-94-015-1258-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002322489", 
          "https://doi.org/10.1038/nature01289"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-07-11", 
    "datePublishedReg": "2008-07-11", 
    "description": "Quantum cryptography has recently been extended to continuous-variable systems, such as the bosonic modes of the electromagnetic field possessing continuous degrees of freedom. In particular, several cryptographic protocols have been proposed and experimentally implemented using bosonic modes with Gaussian statistics. These protocols have shown the possibility of reaching very high secret key rates, even in the presence of strong losses in the quantum communication channel. Despite this robustness to loss, their security can be affected by more general attacks where extra Gaussian noise is introduced by the eavesdropper. Here, we show a \u2018hardware solution\u2019 for enhancing the security thresholds of these protocols. This is possible by extending them to two-way quantum communication where subsequent uses of the quantum channel are suitably combined. In the resulting two-way schemes, one of the honest parties assists the secret encoding of the other, with the chance of a non-trivial superadditive enhancement of the security thresholds. These results should enable the extension of quantum cryptography to more complex quantum communications.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nphys1018", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "two-way quantum communication", 
      "quantum cryptography", 
      "more general attacks", 
      "continuous-variable quantum cryptography", 
      "cryptographic protocols", 
      "hardware solutions", 
      "higher secret key rate", 
      "two-way scheme", 
      "cryptography", 
      "honest parties", 
      "communication channels", 
      "quantum communication channel", 
      "general attack", 
      "security", 
      "secret key rate", 
      "quantum communication", 
      "Gaussian noise", 
      "continuous-variable systems", 
      "communication", 
      "key rate", 
      "superadditive enhancement", 
      "protocol", 
      "bosonic modes", 
      "eavesdropper", 
      "robustness", 
      "encoding", 
      "attacks", 
      "quantum channel", 
      "scheme", 
      "subsequent uses", 
      "continuous degrees", 
      "electromagnetic field", 
      "noise", 
      "channels", 
      "system", 
      "extension", 
      "strong loss", 
      "Gaussian statistics", 
      "solution", 
      "parties", 
      "statistics", 
      "mode", 
      "field", 
      "results", 
      "freedom", 
      "enhancement", 
      "possibility", 
      "chance", 
      "uses", 
      "degree", 
      "rate", 
      "loss", 
      "presence", 
      "extra Gaussian noise", 
      "secret encoding", 
      "non-trivial superadditive enhancement", 
      "complex quantum communications"
    ], 
    "name": "Continuous-variable quantum cryptography using two-way quantum communication", 
    "pagination": "726-730", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048039070"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphys1018"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphys1018", 
      "https://app.dimensions.ai/details/publication/pub.1048039070"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_458.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nphys1018"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphys1018'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphys1018'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphys1018'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphys1018'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      22 PREDICATES      84 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphys1018 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N1da3737b18e14f3aa4a4993facc6b9d1
4 schema:citation sg:pub.10.1007/978-94-015-1258-9
5 sg:pub.10.1038/nature01289
6 schema:datePublished 2008-07-11
7 schema:datePublishedReg 2008-07-11
8 schema:description Quantum cryptography has recently been extended to continuous-variable systems, such as the bosonic modes of the electromagnetic field possessing continuous degrees of freedom. In particular, several cryptographic protocols have been proposed and experimentally implemented using bosonic modes with Gaussian statistics. These protocols have shown the possibility of reaching very high secret key rates, even in the presence of strong losses in the quantum communication channel. Despite this robustness to loss, their security can be affected by more general attacks where extra Gaussian noise is introduced by the eavesdropper. Here, we show a ‘hardware solution’ for enhancing the security thresholds of these protocols. This is possible by extending them to two-way quantum communication where subsequent uses of the quantum channel are suitably combined. In the resulting two-way schemes, one of the honest parties assists the secret encoding of the other, with the chance of a non-trivial superadditive enhancement of the security thresholds. These results should enable the extension of quantum cryptography to more complex quantum communications.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N1043ead8a34141ebb13bcfea49085668
13 N2afe62c415d84e2ca28fdafae09bad04
14 sg:journal.1034717
15 schema:keywords Gaussian noise
16 Gaussian statistics
17 attacks
18 bosonic modes
19 chance
20 channels
21 communication
22 communication channels
23 complex quantum communications
24 continuous degrees
25 continuous-variable quantum cryptography
26 continuous-variable systems
27 cryptographic protocols
28 cryptography
29 degree
30 eavesdropper
31 electromagnetic field
32 encoding
33 enhancement
34 extension
35 extra Gaussian noise
36 field
37 freedom
38 general attack
39 hardware solutions
40 higher secret key rate
41 honest parties
42 key rate
43 loss
44 mode
45 more general attacks
46 noise
47 non-trivial superadditive enhancement
48 parties
49 possibility
50 presence
51 protocol
52 quantum channel
53 quantum communication
54 quantum communication channel
55 quantum cryptography
56 rate
57 results
58 robustness
59 scheme
60 secret encoding
61 secret key rate
62 security
63 solution
64 statistics
65 strong loss
66 subsequent uses
67 superadditive enhancement
68 system
69 two-way quantum communication
70 two-way scheme
71 uses
72 schema:name Continuous-variable quantum cryptography using two-way quantum communication
73 schema:pagination 726-730
74 schema:productId Nb3b761d1753c4fbd816efd1980de3639
75 Nf97a7a252e4440b6b0da9b63274b0445
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048039070
77 https://doi.org/10.1038/nphys1018
78 schema:sdDatePublished 2021-12-01T19:20
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher Na168d20d61a24739acba0889edae9043
81 schema:url https://doi.org/10.1038/nphys1018
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N1043ead8a34141ebb13bcfea49085668 schema:issueNumber 9
86 rdf:type schema:PublicationIssue
87 N1a6e96fec1b64eaf86e892a20f3eccd1 rdf:first sg:person.01073441277.50
88 rdf:rest N98bb47bb23454a6a998e47544e1139a5
89 N1da3737b18e14f3aa4a4993facc6b9d1 rdf:first sg:person.0735101567.34
90 rdf:rest Nbc7775a3d652424aa64008113b64ab97
91 N2afe62c415d84e2ca28fdafae09bad04 schema:volumeNumber 4
92 rdf:type schema:PublicationVolume
93 N98bb47bb23454a6a998e47544e1139a5 rdf:first sg:person.0666766367.22
94 rdf:rest rdf:nil
95 Na168d20d61a24739acba0889edae9043 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nb3b761d1753c4fbd816efd1980de3639 schema:name dimensions_id
98 schema:value pub.1048039070
99 rdf:type schema:PropertyValue
100 Nbc7775a3d652424aa64008113b64ab97 rdf:first sg:person.01221167131.01
101 rdf:rest N1a6e96fec1b64eaf86e892a20f3eccd1
102 Nf97a7a252e4440b6b0da9b63274b0445 schema:name doi
103 schema:value 10.1038/nphys1018
104 rdf:type schema:PropertyValue
105 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
106 schema:name Mathematical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Sciences
110 rdf:type schema:DefinedTerm
111 sg:journal.1034717 schema:issn 1745-2473
112 1745-2481
113 schema:name Nature Physics
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.01073441277.50 schema:affiliation grid-institutes:grid.116068.8
117 schema:familyName Lloyd
118 schema:givenName Seth
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073441277.50
120 rdf:type schema:Person
121 sg:person.01221167131.01 schema:affiliation grid-institutes:grid.5602.1
122 schema:familyName Mancini
123 schema:givenName Stefano
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221167131.01
125 rdf:type schema:Person
126 sg:person.0666766367.22 schema:affiliation grid-institutes:grid.5685.e
127 schema:familyName Braunstein
128 schema:givenName Samuel L.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22
130 rdf:type schema:Person
131 sg:person.0735101567.34 schema:affiliation grid-institutes:grid.116068.8
132 schema:familyName Pirandola
133 schema:givenName Stefano
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735101567.34
135 rdf:type schema:Person
136 sg:pub.10.1007/978-94-015-1258-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049787368
137 https://doi.org/10.1007/978-94-015-1258-9
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature01289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002322489
140 https://doi.org/10.1038/nature01289
141 rdf:type schema:CreativeWork
142 grid-institutes:grid.116068.8 schema:alternateName Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
143 Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
144 schema:name Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
145 Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
146 rdf:type schema:Organization
147 grid-institutes:grid.5602.1 schema:alternateName Dipartimento di Fisica & CNISM, Università di Camerino, Camerino 62032, Italy
148 schema:name Dipartimento di Fisica & CNISM, Università di Camerino, Camerino 62032, Italy
149 rdf:type schema:Organization
150 grid-institutes:grid.5685.e schema:alternateName Department of Computer Science, University of York, York YO10 5DD, UK
151 schema:name Department of Computer Science, University of York, York YO10 5DD, UK
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...