Ultimate classical communication rates of quantum optical channels View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-10

AUTHORS

V. Giovannetti, R. García-Patrón, N. J. Cerf, A. S. Holevo

ABSTRACT

Optical channels, such as fibres or free-space links, are ubiquitous in today's telecommunication networks. They rely on the electromagnetic field associated with photons to carry information from one point to another in space. A complete physical model of these channels must necessarily take quantum effects into account to determine their ultimate performances. Single-mode, phase-insensitive bosonic Gaussian channels have been extensively studied over past decades, given their importance for practical applications. In spite of this, a long-standing unsolved conjecture on the optimality of Gaussian encodings has prevented finding their classical communication capacity. Here, this conjecture is solved by proving that the vacuum state achieves the minimum output entropy of these channels. This establishes the ultimate achievable bit rate under an energy constraint, as well as the long awaited proof that the single-letter classical capacity of these channels is additive. More... »

PAGES

796-800

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphoton.2014.216

DOI

http://dx.doi.org/10.1038/nphoton.2014.216

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005171119


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56127 Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giovannetti", 
        "givenName": "V.", 
        "id": "sg:person.0751566121.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Quantum Optics", 
          "id": "https://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "QuIC, Ecole Polytechnique de Bruxelles, CP 165, Universit\u00e9 Libre de Bruxelles, 1050 Bruxelles, Belgium", 
            "Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Patr\u00f3n", 
        "givenName": "R.", 
        "id": "sg:person.01032027137.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032027137.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Libre de Bruxelles", 
          "id": "https://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "QuIC, Ecole Polytechnique de Bruxelles, CP 165, Universit\u00e9 Libre de Bruxelles, 1050 Bruxelles, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cerf", 
        "givenName": "N. J.", 
        "id": "sg:person.01367240322.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367240322.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University Higher School of Economics", 
          "id": "https://www.grid.ac/institutes/grid.410682.9", 
          "name": [
            "Steklov Mathematical Institute, RAS, 119991 Moscow, Russia", 
            "National Research University Higher School of Economics (HSE), 101000 Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holevo", 
        "givenName": "A. S.", 
        "id": "sg:person.012742037634.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.108.110505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002063646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.110505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002063646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0032946007010012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004148019", 
          "https://doi.org/10.1134/s0032946007010012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.032303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005554926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.032303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005554926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/41/415305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006938061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/41/415305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006938061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010065014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010065014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.022328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012837150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.022328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012837150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.012320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012940258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.012320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012940258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2012.342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018624925", 
          "https://doi.org/10.1038/nphoton.2012.342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.062307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018953587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.062307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018953587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110273403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022441139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.3824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022782738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.3824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022782738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.140405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024672263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.140405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024672263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.027902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024997734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.027902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024997734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.052320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025595044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.052320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025595044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.84.1655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026171320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.84.1655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026171320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.84.621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029564491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.84.621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029564491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.107901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031338168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.107901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031338168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031768393", 
          "https://doi.org/10.1038/nphoton.2013.193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.030503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032418487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.030503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032418487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/8/12/310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036901610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.040501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038138166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.040501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038138166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0032946008030010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038732279", 
          "https://doi.org/10.1134/s0032946008030010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.062307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039309175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.062307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039309175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/6/063023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047369355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/6/063023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047369355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-003-0919-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049631127", 
          "https://doi.org/10.1007/s00220-003-0919-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053243892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053243892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1998v053n06abeh000091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058197108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.032312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.032312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.50.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.50.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.66.481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.66.481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.651037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.720553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jrproc.1962.288169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061315406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0040585x97981470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062878556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0040585x97982244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062878631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-10", 
    "datePublishedReg": "2014-10-01", 
    "description": "Optical channels, such as fibres or free-space links, are ubiquitous in today's telecommunication networks. They rely on the electromagnetic field associated with photons to carry information from one point to another in space. A complete physical model of these channels must necessarily take quantum effects into account to determine their ultimate performances. Single-mode, phase-insensitive bosonic Gaussian channels have been extensively studied over past decades, given their importance for practical applications. In spite of this, a long-standing unsolved conjecture on the optimality of Gaussian encodings has prevented finding their classical communication capacity. Here, this conjecture is solved by proving that the vacuum state achieves the minimum output entropy of these channels. This establishes the ultimate achievable bit rate under an energy constraint, as well as the long awaited proof that the single-letter classical capacity of these channels is additive.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphoton.2014.216", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6951297", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037430", 
        "issn": [
          "1749-4885", 
          "1749-4893"
        ], 
        "name": "Nature Photonics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Ultimate classical communication rates of quantum optical channels", 
    "pagination": "796-800", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "18a3052c93ee5e9cefee7ae2fbead47883b26587408d9caf89b96aeac56b3a41"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphoton.2014.216"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005171119"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphoton.2014.216", 
      "https://app.dimensions.ai/details/publication/pub.1005171119"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nphoton.2014.216"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2014.216'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2014.216'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2014.216'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2014.216'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphoton.2014.216 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N7588c7c55d394bf5a8ae1be1413564f8
4 schema:citation sg:pub.10.1007/s00220-003-0919-0
5 sg:pub.10.1038/nphoton.2012.342
6 sg:pub.10.1038/nphoton.2013.193
7 sg:pub.10.1134/s0032946007010012
8 sg:pub.10.1134/s0032946008030010
9 https://doi.org/10.1002/0471200611
10 https://doi.org/10.1070/rm1998v053n06abeh000091
11 https://doi.org/10.1088/1367-2630/11/6/063023
12 https://doi.org/10.1088/1367-2630/8/12/310
13 https://doi.org/10.1088/1751-8113/43/41/415305
14 https://doi.org/10.1103/physreva.54.3824
15 https://doi.org/10.1103/physreva.56.131
16 https://doi.org/10.1103/physreva.63.032312
17 https://doi.org/10.1103/physreva.69.052320
18 https://doi.org/10.1103/physreva.69.062307
19 https://doi.org/10.1103/physreva.70.022328
20 https://doi.org/10.1103/physreva.70.032315
21 https://doi.org/10.1103/physreva.71.012320
22 https://doi.org/10.1103/physreva.74.062307
23 https://doi.org/10.1103/physreva.76.032303
24 https://doi.org/10.1103/physrevlett.108.110505
25 https://doi.org/10.1103/physrevlett.110.040501
26 https://doi.org/10.1103/physrevlett.111.030503
27 https://doi.org/10.1103/physrevlett.113.140405
28 https://doi.org/10.1103/physrevlett.91.107901
29 https://doi.org/10.1103/physrevlett.92.027902
30 https://doi.org/10.1103/revmodphys.50.221
31 https://doi.org/10.1103/revmodphys.66.481
32 https://doi.org/10.1103/revmodphys.77.513
33 https://doi.org/10.1103/revmodphys.84.1655
34 https://doi.org/10.1103/revmodphys.84.621
35 https://doi.org/10.1109/18.651037
36 https://doi.org/10.1109/18.720553
37 https://doi.org/10.1109/jrproc.1962.288169
38 https://doi.org/10.1137/s0040585x97981470
39 https://doi.org/10.1137/s0040585x97982244
40 https://doi.org/10.1515/9783110273403
41 schema:datePublished 2014-10
42 schema:datePublishedReg 2014-10-01
43 schema:description Optical channels, such as fibres or free-space links, are ubiquitous in today's telecommunication networks. They rely on the electromagnetic field associated with photons to carry information from one point to another in space. A complete physical model of these channels must necessarily take quantum effects into account to determine their ultimate performances. Single-mode, phase-insensitive bosonic Gaussian channels have been extensively studied over past decades, given their importance for practical applications. In spite of this, a long-standing unsolved conjecture on the optimality of Gaussian encodings has prevented finding their classical communication capacity. Here, this conjecture is solved by proving that the vacuum state achieves the minimum output entropy of these channels. This establishes the ultimate achievable bit rate under an energy constraint, as well as the long awaited proof that the single-letter classical capacity of these channels is additive.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf Na556a549096647e99d9e4f072c23a030
48 Nf5702f1e35f34adcbfcc5a11096df14c
49 sg:journal.1037430
50 schema:name Ultimate classical communication rates of quantum optical channels
51 schema:pagination 796-800
52 schema:productId N5ba7d11283024c7a9039bad249b2245c
53 N782aa63d5ec94098b037daf5e148b88d
54 Ncc936816f354409fbaa7176d10b1331b
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005171119
56 https://doi.org/10.1038/nphoton.2014.216
57 schema:sdDatePublished 2019-04-10T18:07
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Nfe79a8b4d77a439288f7ef5b0b08bf54
60 schema:url http://www.nature.com/articles/nphoton.2014.216
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N25f0c9c2840b4870b0c2c1eaa3f452c8 rdf:first sg:person.012742037634.56
65 rdf:rest rdf:nil
66 N48cefd8fa7be4a2f88d772a1ab541aef rdf:first sg:person.01032027137.99
67 rdf:rest N6ef4b8c0e7304e7db883233e90692151
68 N5ba7d11283024c7a9039bad249b2245c schema:name dimensions_id
69 schema:value pub.1005171119
70 rdf:type schema:PropertyValue
71 N6ef4b8c0e7304e7db883233e90692151 rdf:first sg:person.01367240322.81
72 rdf:rest N25f0c9c2840b4870b0c2c1eaa3f452c8
73 N7588c7c55d394bf5a8ae1be1413564f8 rdf:first sg:person.0751566121.99
74 rdf:rest N48cefd8fa7be4a2f88d772a1ab541aef
75 N782aa63d5ec94098b037daf5e148b88d schema:name readcube_id
76 schema:value 18a3052c93ee5e9cefee7ae2fbead47883b26587408d9caf89b96aeac56b3a41
77 rdf:type schema:PropertyValue
78 N9c9b58e5f7a4466a8c68be956665140e schema:name NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56127 Pisa, Italy
79 rdf:type schema:Organization
80 Na556a549096647e99d9e4f072c23a030 schema:volumeNumber 8
81 rdf:type schema:PublicationVolume
82 Ncc936816f354409fbaa7176d10b1331b schema:name doi
83 schema:value 10.1038/nphoton.2014.216
84 rdf:type schema:PropertyValue
85 Nf5702f1e35f34adcbfcc5a11096df14c schema:issueNumber 10
86 rdf:type schema:PublicationIssue
87 Nfe79a8b4d77a439288f7ef5b0b08bf54 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
90 schema:name Information and Computing Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
93 schema:name Computation Theory and Mathematics
94 rdf:type schema:DefinedTerm
95 sg:grant.6951297 http://pending.schema.org/fundedItem sg:pub.10.1038/nphoton.2014.216
96 rdf:type schema:MonetaryGrant
97 sg:journal.1037430 schema:issn 1749-4885
98 1749-4893
99 schema:name Nature Photonics
100 rdf:type schema:Periodical
101 sg:person.01032027137.99 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
102 schema:familyName García-Patrón
103 schema:givenName R.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032027137.99
105 rdf:type schema:Person
106 sg:person.012742037634.56 schema:affiliation https://www.grid.ac/institutes/grid.410682.9
107 schema:familyName Holevo
108 schema:givenName A. S.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56
110 rdf:type schema:Person
111 sg:person.01367240322.81 schema:affiliation https://www.grid.ac/institutes/grid.4989.c
112 schema:familyName Cerf
113 schema:givenName N. J.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367240322.81
115 rdf:type schema:Person
116 sg:person.0751566121.99 schema:affiliation N9c9b58e5f7a4466a8c68be956665140e
117 schema:familyName Giovannetti
118 schema:givenName V.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99
120 rdf:type schema:Person
121 sg:pub.10.1007/s00220-003-0919-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049631127
122 https://doi.org/10.1007/s00220-003-0919-0
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nphoton.2012.342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018624925
125 https://doi.org/10.1038/nphoton.2012.342
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nphoton.2013.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031768393
128 https://doi.org/10.1038/nphoton.2013.193
129 rdf:type schema:CreativeWork
130 sg:pub.10.1134/s0032946007010012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004148019
131 https://doi.org/10.1134/s0032946007010012
132 rdf:type schema:CreativeWork
133 sg:pub.10.1134/s0032946008030010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038732279
134 https://doi.org/10.1134/s0032946008030010
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/0471200611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661155
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1070/rm1998v053n06abeh000091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058197108
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1088/1367-2630/11/6/063023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047369355
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1088/1367-2630/8/12/310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036901610
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1088/1751-8113/43/41/415305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006938061
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physreva.54.3824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022782738
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physreva.56.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060492887
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreva.63.032312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060496978
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physreva.69.052320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025595044
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physreva.69.062307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018953587
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physreva.70.022328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012837150
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreva.70.032315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010065014
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physreva.71.012320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012940258
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physreva.74.062307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039309175
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physreva.76.032303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005554926
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.108.110505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002063646
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.110.040501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038138166
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.111.030503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032418487
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.113.140405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024672263
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.91.107901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031338168
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.92.027902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024997734
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/revmodphys.50.221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838892
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/revmodphys.66.481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839325
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/revmodphys.77.513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053243892
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/revmodphys.84.1655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026171320
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/revmodphys.84.621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029564491
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/18.651037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100566
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/18.720553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100785
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/jrproc.1962.288169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061315406
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1137/s0040585x97981470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062878556
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1137/s0040585x97982244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062878631
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1515/9783110273403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022441139
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.410682.9 schema:alternateName National Research University Higher School of Economics
201 schema:name National Research University Higher School of Economics (HSE), 101000 Moscow, Russia
202 Steklov Mathematical Institute, RAS, 119991 Moscow, Russia
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.450272.6 schema:alternateName Max Planck Institute of Quantum Optics
205 schema:name Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
206 QuIC, Ecole Polytechnique de Bruxelles, CP 165, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.4989.c schema:alternateName Université Libre de Bruxelles
209 schema:name QuIC, Ecole Polytechnique de Bruxelles, CP 165, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...