Electromagnetic channel capacity for practical purposes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-10

AUTHORS

Vittorio Giovannetti, Seth Lloyd, Lorenzo Maccone, Jeffrey H. Shapiro

ABSTRACT

What is the maximum rate at which digital information can be communicated without error using electromagnetic signals, such as radio communication? According to Shannon theory this rate is the capacity of the communication channel, which is obtained by maximizing the mutual information between the channel's input and output. Shannon theory, however, has been developed within classical physics, whereas electromagnetic signals are, ultimately, quantum-mechanical entities. To account for this fact, the capacity must be expressed in terms of a complicated optimization of the Holevo information, but explicit solutions are still unknown for arguably the most elementary electromagnetic channel, the one degraded by additive thermal noise. We place bounds on the thermal channel's Holevo information that determine the capacity up to corrections that are insignificant for practical scenarios such as those with high noise or low transmissivity. Our results apply to any bosonic thermal-noise channel, including electromagnetic signalling at any frequency. More... »

PAGES

834-838

References to SciGraph publications

  • 2009-04. Superadditivity of communication capacity using entangled inputs in NATURE PHYSICS
  • 2008-09. Entanglement-breaking channels in infinite dimensions in PROBLEMS OF INFORMATION TRANSMISSION
  • 2006-02. The Holevo Capacity of Infinite Dimensional Channels and the Additivity Problem in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2003-09. Rényi Extrapolation of Shannon Entropy in OPEN SYSTEMS AND INFORMATION DYNAMICS
  • 2013-02. Limits on classical communication from quantum entropy power inequalities in NATURE PHOTONICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nphoton.2013.193

    DOI

    http://dx.doi.org/10.1038/nphoton.2013.193

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031768393


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Communications Technologies", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, piazza dei Cavalieri 7, I-56126 Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giovannetti", 
            "givenName": "Vittorio", 
            "id": "sg:person.0751566121.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lloyd", 
            "givenName": "Seth", 
            "id": "sg:person.01073441277.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073441277.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pavia", 
              "id": "https://www.grid.ac/institutes/grid.8982.b", 
              "name": [
                "Dipartimento Fisica \u2018A. Volta\u2019, University of Pavia, via Bassi 6, I-27100 Pavia, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maccone", 
            "givenName": "Lorenzo", 
            "id": "sg:person.01112461427.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112461427.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shapiro", 
            "givenName": "Jeffrey H.", 
            "id": "sg:person.01345417476.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345417476.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.108.110505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002063646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.110505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002063646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/43/41/415305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006938061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/43/41/415305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006938061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.70.032315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010065014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.70.032315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010065014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.047901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012932403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.047901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012932403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2012.342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018624925", 
              "https://doi.org/10.1038/nphoton.2012.342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.69.062307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018953587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.69.062307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018953587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1498000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021978041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.027902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024997734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.027902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024997734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.73.012330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028138914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.73.012330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028138914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025128024427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032807867", 
              "https://doi.org/10.1023/a:1025128024427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.620512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035236714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-005-1457-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036935783", 
              "https://doi.org/10.1007/s00220-005-1457-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-005-1457-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036935783", 
              "https://doi.org/10.1007/s00220-005-1457-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.040501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038138166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.040501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038138166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0032946008030010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038732279", 
              "https://doi.org/10.1134/s0032946008030010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048583046", 
              "https://doi.org/10.1038/nphys1224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/75/4/046001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052500201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1538-7305.1948.tb01338.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052867467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.56.131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060492887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.56.131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060492887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.63.032312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060496978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.63.032312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060496978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.66.481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.66.481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.651037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061100566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0040585x97981470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062878556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129055x03001709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062897969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/jon.4.000501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065140252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511524585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098667563"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-10", 
        "datePublishedReg": "2013-10-01", 
        "description": "What is the maximum rate at which digital information can be communicated without error using electromagnetic signals, such as radio communication? According to Shannon theory this rate is the capacity of the communication channel, which is obtained by maximizing the mutual information between the channel's input and output. Shannon theory, however, has been developed within classical physics, whereas electromagnetic signals are, ultimately, quantum-mechanical entities. To account for this fact, the capacity must be expressed in terms of a complicated optimization of the Holevo information, but explicit solutions are still unknown for arguably the most elementary electromagnetic channel, the one degraded by additive thermal noise. We place bounds on the thermal channel's Holevo information that determine the capacity up to corrections that are insignificant for practical scenarios such as those with high noise or low transmissivity. Our results apply to any bosonic thermal-noise channel, including electromagnetic signalling at any frequency.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nphoton.2013.193", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1037430", 
            "issn": [
              "1749-4885", 
              "1749-4893"
            ], 
            "name": "Nature Photonics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Electromagnetic channel capacity for practical purposes", 
        "pagination": "834-838", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "97568e46b0640c0cf435540dace61cfd5b056a510f83ffcba638cf5d9e2a13b0"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nphoton.2013.193"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031768393"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nphoton.2013.193", 
          "https://app.dimensions.ai/details/publication/pub.1031768393"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000425.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nphoton.2013.193"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2013.193'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2013.193'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2013.193'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2013.193'


     

    This table displays all metadata directly associated to this object as RDF triples.

    168 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nphoton.2013.193 schema:about anzsrc-for:10
    2 anzsrc-for:1005
    3 schema:author N78e1d4c88f3548dc8fbbd1c13987fa43
    4 schema:citation sg:pub.10.1007/s00220-005-1457-8
    5 sg:pub.10.1023/a:1025128024427
    6 sg:pub.10.1038/nphoton.2012.342
    7 sg:pub.10.1038/nphys1224
    8 sg:pub.10.1134/s0032946008030010
    9 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
    10 https://doi.org/10.1017/cbo9780511524585
    11 https://doi.org/10.1063/1.1498000
    12 https://doi.org/10.1088/0034-4885/75/4/046001
    13 https://doi.org/10.1088/1751-8113/43/41/415305
    14 https://doi.org/10.1103/physreva.56.131
    15 https://doi.org/10.1103/physreva.63.032312
    16 https://doi.org/10.1103/physreva.69.062307
    17 https://doi.org/10.1103/physreva.70.032315
    18 https://doi.org/10.1103/physreva.73.012330
    19 https://doi.org/10.1103/physrevlett.108.110505
    20 https://doi.org/10.1103/physrevlett.110.040501
    21 https://doi.org/10.1103/physrevlett.91.047901
    22 https://doi.org/10.1103/physrevlett.92.027902
    23 https://doi.org/10.1103/revmodphys.66.481
    24 https://doi.org/10.1109/18.651037
    25 https://doi.org/10.1117/12.620512
    26 https://doi.org/10.1137/s0040585x97981470
    27 https://doi.org/10.1142/s0129055x03001709
    28 https://doi.org/10.1364/jon.4.000501
    29 schema:datePublished 2013-10
    30 schema:datePublishedReg 2013-10-01
    31 schema:description What is the maximum rate at which digital information can be communicated without error using electromagnetic signals, such as radio communication? According to Shannon theory this rate is the capacity of the communication channel, which is obtained by maximizing the mutual information between the channel's input and output. Shannon theory, however, has been developed within classical physics, whereas electromagnetic signals are, ultimately, quantum-mechanical entities. To account for this fact, the capacity must be expressed in terms of a complicated optimization of the Holevo information, but explicit solutions are still unknown for arguably the most elementary electromagnetic channel, the one degraded by additive thermal noise. We place bounds on the thermal channel's Holevo information that determine the capacity up to corrections that are insignificant for practical scenarios such as those with high noise or low transmissivity. Our results apply to any bosonic thermal-noise channel, including electromagnetic signalling at any frequency.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N4819cb3343d544928e5f0d420092e810
    36 Neabb25b2af6e4713ac5832d5108e3c7a
    37 sg:journal.1037430
    38 schema:name Electromagnetic channel capacity for practical purposes
    39 schema:pagination 834-838
    40 schema:productId Na400058848ba4f3298c0f01b9fbb9149
    41 Naf93c795b85440b293a9084fe4003dc8
    42 Nbf5f25998ca8414da6be1033834ac507
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031768393
    44 https://doi.org/10.1038/nphoton.2013.193
    45 schema:sdDatePublished 2019-04-10T14:48
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N850f20279cf2443a9ef44228b41c096f
    48 schema:url http://www.nature.com/articles/nphoton.2013.193
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N4190de9b1265457ab8c48bdd704e94d7 schema:name NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, piazza dei Cavalieri 7, I-56126 Pisa, Italy
    53 rdf:type schema:Organization
    54 N4819cb3343d544928e5f0d420092e810 schema:volumeNumber 7
    55 rdf:type schema:PublicationVolume
    56 N681c9b93bc1c4d7e879d643ea7ffd1fb rdf:first sg:person.01073441277.50
    57 rdf:rest Ncd3b807084444c8bb441f5614bf63fda
    58 N78e1d4c88f3548dc8fbbd1c13987fa43 rdf:first sg:person.0751566121.99
    59 rdf:rest N681c9b93bc1c4d7e879d643ea7ffd1fb
    60 N850f20279cf2443a9ef44228b41c096f schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 Na400058848ba4f3298c0f01b9fbb9149 schema:name readcube_id
    63 schema:value 97568e46b0640c0cf435540dace61cfd5b056a510f83ffcba638cf5d9e2a13b0
    64 rdf:type schema:PropertyValue
    65 Naf93c795b85440b293a9084fe4003dc8 schema:name doi
    66 schema:value 10.1038/nphoton.2013.193
    67 rdf:type schema:PropertyValue
    68 Nb35a326cd6cc40ffa1d53a07c4deda44 rdf:first sg:person.01345417476.88
    69 rdf:rest rdf:nil
    70 Nbf5f25998ca8414da6be1033834ac507 schema:name dimensions_id
    71 schema:value pub.1031768393
    72 rdf:type schema:PropertyValue
    73 Ncd3b807084444c8bb441f5614bf63fda rdf:first sg:person.01112461427.43
    74 rdf:rest Nb35a326cd6cc40ffa1d53a07c4deda44
    75 Neabb25b2af6e4713ac5832d5108e3c7a schema:issueNumber 10
    76 rdf:type schema:PublicationIssue
    77 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Technology
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Communications Technologies
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1037430 schema:issn 1749-4885
    84 1749-4893
    85 schema:name Nature Photonics
    86 rdf:type schema:Periodical
    87 sg:person.01073441277.50 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    88 schema:familyName Lloyd
    89 schema:givenName Seth
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073441277.50
    91 rdf:type schema:Person
    92 sg:person.01112461427.43 schema:affiliation https://www.grid.ac/institutes/grid.8982.b
    93 schema:familyName Maccone
    94 schema:givenName Lorenzo
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112461427.43
    96 rdf:type schema:Person
    97 sg:person.01345417476.88 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    98 schema:familyName Shapiro
    99 schema:givenName Jeffrey H.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345417476.88
    101 rdf:type schema:Person
    102 sg:person.0751566121.99 schema:affiliation N4190de9b1265457ab8c48bdd704e94d7
    103 schema:familyName Giovannetti
    104 schema:givenName Vittorio
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99
    106 rdf:type schema:Person
    107 sg:pub.10.1007/s00220-005-1457-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036935783
    108 https://doi.org/10.1007/s00220-005-1457-8
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1023/a:1025128024427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032807867
    111 https://doi.org/10.1023/a:1025128024427
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1038/nphoton.2012.342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018624925
    114 https://doi.org/10.1038/nphoton.2012.342
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1038/nphys1224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048583046
    117 https://doi.org/10.1038/nphys1224
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1134/s0032946008030010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038732279
    120 https://doi.org/10.1134/s0032946008030010
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867467
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1017/cbo9780511524585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667563
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1063/1.1498000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021978041
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1088/0034-4885/75/4/046001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052500201
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1088/1751-8113/43/41/415305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006938061
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1103/physreva.56.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060492887
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1103/physreva.63.032312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060496978
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1103/physreva.69.062307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018953587
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1103/physreva.70.032315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010065014
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1103/physreva.73.012330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028138914
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1103/physrevlett.108.110505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002063646
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1103/physrevlett.110.040501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038138166
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1103/physrevlett.91.047901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012932403
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1103/physrevlett.92.027902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024997734
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1103/revmodphys.66.481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839325
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/18.651037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100566
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1117/12.620512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035236714
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1137/s0040585x97981470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062878556
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1142/s0129055x03001709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062897969
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1364/jon.4.000501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065140252
    161 rdf:type schema:CreativeWork
    162 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
    163 schema:name Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
    164 Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
    165 rdf:type schema:Organization
    166 https://www.grid.ac/institutes/grid.8982.b schema:alternateName University of Pavia
    167 schema:name Dipartimento Fisica ‘A. Volta’, University of Pavia, via Bassi 6, I-27100 Pavia, Italy
    168 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...