Limits on classical communication from quantum entropy power inequalities View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-02

AUTHORS

Robert König, Graeme Smith

ABSTRACT

Almost all modern communication systems rely on electromagnetic fields. The additive white Gaussian noise (AWGN) channel is often a good approximate description of such a system, and its information-carrying capacity is given by a simple formula. The quantum analogue of AWGN channels, the bosonic Gaussian noise channel, accurately describes many quantum optical communication systems of interest. Estimating its capacity is significantly more difficult; although some simple coding strategies are known, whether or not more sophisticated techniques could dramatically improve communication rates has been unknown. Here, we present strong new upper bounds for the classical capacity of bosonic Gaussian noise channels. These results imply that known coding techniques are typically close to optimal. Our main technical tool is an entropy power inequality bounding the entropy produced as two quantum signals combine at a beamsplitter. Its proof relies on a quantum diffusion process which smooths arbitrary states towards Gaussians. More... »

PAGES

142

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nphoton.2012.342

DOI

http://dx.doi.org/10.1038/nphoton.2012.342

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018624925


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "IBM TJ Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, USA", 
            "Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, ON, Canada, N2L3G1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00f6nig", 
        "givenName": "Robert", 
        "id": "sg:person.014314110234.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014314110234.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM TJ Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Graeme", 
        "id": "sg:person.01024733371.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024733371.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1751-8113/43/41/415305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006938061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/41/415305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006938061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(59)90348-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010003843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010065014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010065014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.012320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012940258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.012320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012940258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/35/4/305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014185882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.080502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018024182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.080502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018024182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-003-0981-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020153714", 
          "https://doi.org/10.1007/s00220-003-0981-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.027902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024997734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.027902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024997734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176992632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030934435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1948.tb00917.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038869286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2011.203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042806484", 
          "https://doi.org/10.1038/nphoton.2011.203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.012107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043391946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.012107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043391946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048583046", 
          "https://doi.org/10.1038/nphys1224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.032312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.032312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.50.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.50.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.104312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061098493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.651037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.669301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.904522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1965.1053768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061646096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1973.1054955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061647234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1974.1055184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061647427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1978.1055917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061648120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1985.1057105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061649218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2006.872978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2010.2090193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061653016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2011.2165811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061653546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2014.2298436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061654778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3212771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070226973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9781860948169_0002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088730057"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-02", 
    "datePublishedReg": "2013-02-01", 
    "description": "Almost all modern communication systems rely on electromagnetic fields. The additive white Gaussian noise (AWGN) channel is often a good approximate description of such a system, and its information-carrying capacity is given by a simple formula. The quantum analogue of AWGN channels, the bosonic Gaussian noise channel, accurately describes many quantum optical communication systems of interest. Estimating its capacity is significantly more difficult; although some simple coding strategies are known, whether or not more sophisticated techniques could dramatically improve communication rates has been unknown. Here, we present strong new upper bounds for the classical capacity of bosonic Gaussian noise channels. These results imply that known coding techniques are typically close to optimal. Our main technical tool is an entropy power inequality bounding the entropy produced as two quantum signals combine at a beamsplitter. Its proof relies on a quantum diffusion process which smooths arbitrary states towards Gaussians.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nphoton.2012.342", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037430", 
        "issn": [
          "1749-4885", 
          "1749-4893"
        ], 
        "name": "Nature Photonics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Limits on classical communication from quantum entropy power inequalities", 
    "pagination": "142", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "58bd78937966e36e3df644fcc1f4552f4ec82d04289598dc224fe50422ae933c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nphoton.2012.342"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018624925"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nphoton.2012.342", 
      "https://app.dimensions.ai/details/publication/pub.1018624925"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nphoton.2012.342"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2012.342'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2012.342'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2012.342'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nphoton.2012.342'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nphoton.2012.342 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author Nf2e015a96c2545edb6ffcc6272a3918f
4 schema:citation sg:pub.10.1007/s00220-003-0981-7
5 sg:pub.10.1038/nphoton.2011.203
6 sg:pub.10.1038/nphys1224
7 https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
8 https://doi.org/10.1016/s0019-9958(59)90348-1
9 https://doi.org/10.1088/0305-4470/35/4/305
10 https://doi.org/10.1088/1751-8113/43/41/415305
11 https://doi.org/10.1103/physreva.56.131
12 https://doi.org/10.1103/physreva.62.012107
13 https://doi.org/10.1103/physreva.63.032312
14 https://doi.org/10.1103/physreva.70.032315
15 https://doi.org/10.1103/physreva.71.012320
16 https://doi.org/10.1103/physrevlett.92.027902
17 https://doi.org/10.1103/physrevlett.96.080502
18 https://doi.org/10.1103/revmodphys.50.221
19 https://doi.org/10.1109/18.104312
20 https://doi.org/10.1109/18.651037
21 https://doi.org/10.1109/18.669301
22 https://doi.org/10.1109/18.904522
23 https://doi.org/10.1109/tit.1965.1053768
24 https://doi.org/10.1109/tit.1973.1054955
25 https://doi.org/10.1109/tit.1974.1055184
26 https://doi.org/10.1109/tit.1978.1055917
27 https://doi.org/10.1109/tit.1985.1057105
28 https://doi.org/10.1109/tit.2006.872978
29 https://doi.org/10.1109/tit.2010.2090193
30 https://doi.org/10.1109/tit.2011.2165811
31 https://doi.org/10.1109/tit.2014.2298436
32 https://doi.org/10.1142/9781860948169_0002
33 https://doi.org/10.1214/aop/1176992632
34 https://doi.org/10.2307/3212771
35 schema:datePublished 2013-02
36 schema:datePublishedReg 2013-02-01
37 schema:description Almost all modern communication systems rely on electromagnetic fields. The additive white Gaussian noise (AWGN) channel is often a good approximate description of such a system, and its information-carrying capacity is given by a simple formula. The quantum analogue of AWGN channels, the bosonic Gaussian noise channel, accurately describes many quantum optical communication systems of interest. Estimating its capacity is significantly more difficult; although some simple coding strategies are known, whether or not more sophisticated techniques could dramatically improve communication rates has been unknown. Here, we present strong new upper bounds for the classical capacity of bosonic Gaussian noise channels. These results imply that known coding techniques are typically close to optimal. Our main technical tool is an entropy power inequality bounding the entropy produced as two quantum signals combine at a beamsplitter. Its proof relies on a quantum diffusion process which smooths arbitrary states towards Gaussians.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N85f0dcdefcca4f2993b6b986cf177d86
42 Ne21da2a2519449e7aa33f46aaf969aa7
43 sg:journal.1037430
44 schema:name Limits on classical communication from quantum entropy power inequalities
45 schema:pagination 142
46 schema:productId N13ea879b7099473e8bbe5d906449a303
47 N2ebcffbb9ee54dd284a3cb20a31bd0bc
48 Ndc00671fda29485bbebf2bc16e67e9b2
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018624925
50 https://doi.org/10.1038/nphoton.2012.342
51 schema:sdDatePublished 2019-04-11T00:05
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nc9b680772db649038ec188a6ad7295fc
54 schema:url https://www.nature.com/articles/nphoton.2012.342
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N13ea879b7099473e8bbe5d906449a303 schema:name dimensions_id
59 schema:value pub.1018624925
60 rdf:type schema:PropertyValue
61 N2ebcffbb9ee54dd284a3cb20a31bd0bc schema:name readcube_id
62 schema:value 58bd78937966e36e3df644fcc1f4552f4ec82d04289598dc224fe50422ae933c
63 rdf:type schema:PropertyValue
64 N85f0dcdefcca4f2993b6b986cf177d86 schema:volumeNumber 7
65 rdf:type schema:PublicationVolume
66 Nc6ffb3236fdf4c8da7df25547a639f07 rdf:first sg:person.01024733371.47
67 rdf:rest rdf:nil
68 Nc9b680772db649038ec188a6ad7295fc schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Ndc00671fda29485bbebf2bc16e67e9b2 schema:name doi
71 schema:value 10.1038/nphoton.2012.342
72 rdf:type schema:PropertyValue
73 Ne21da2a2519449e7aa33f46aaf969aa7 schema:issueNumber 2
74 rdf:type schema:PublicationIssue
75 Nf2e015a96c2545edb6ffcc6272a3918f rdf:first sg:person.014314110234.49
76 rdf:rest Nc6ffb3236fdf4c8da7df25547a639f07
77 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
78 schema:name Technology
79 rdf:type schema:DefinedTerm
80 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
81 schema:name Communications Technologies
82 rdf:type schema:DefinedTerm
83 sg:journal.1037430 schema:issn 1749-4885
84 1749-4893
85 schema:name Nature Photonics
86 rdf:type schema:Periodical
87 sg:person.01024733371.47 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
88 schema:familyName Smith
89 schema:givenName Graeme
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024733371.47
91 rdf:type schema:Person
92 sg:person.014314110234.49 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
93 schema:familyName König
94 schema:givenName Robert
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014314110234.49
96 rdf:type schema:Person
97 sg:pub.10.1007/s00220-003-0981-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020153714
98 https://doi.org/10.1007/s00220-003-0981-7
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/nphoton.2011.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042806484
101 https://doi.org/10.1038/nphoton.2011.203
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/nphys1224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048583046
104 https://doi.org/10.1038/nphys1224
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/j.1538-7305.1948.tb00917.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038869286
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0019-9958(59)90348-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010003843
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1088/0305-4470/35/4/305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014185882
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1088/1751-8113/43/41/415305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006938061
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physreva.56.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060492887
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physreva.62.012107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043391946
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physreva.63.032312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060496978
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physreva.70.032315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010065014
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physreva.71.012320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012940258
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevlett.92.027902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024997734
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.96.080502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018024182
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/revmodphys.50.221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838892
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/18.104312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061098493
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/18.651037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100566
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/18.669301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100668
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/18.904522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101544
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/tit.1965.1053768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061646096
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/tit.1973.1054955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647234
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/tit.1974.1055184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647427
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tit.1978.1055917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061648120
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tit.1985.1057105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061649218
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tit.2006.872978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650919
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tit.2010.2090193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061653016
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tit.2011.2165811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061653546
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tit.2014.2298436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061654778
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1142/9781860948169_0002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088730057
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1214/aop/1176992632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030934435
159 rdf:type schema:CreativeWork
160 https://doi.org/10.2307/3212771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070226973
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
163 schema:name IBM TJ Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, USA
164 Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, ON, Canada, N2L3G1
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.481554.9 schema:alternateName IBM Research – Thomas J. Watson Research Center
167 schema:name IBM TJ Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, USA
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...